This repository implements Deep Knowledge Tracing (DKT) using PyTorch and AWS Inferentia2 for efficient inference on SageMaker.
Deep Knowledge Tracing is a machine learning method that models student knowledge over time. This implementation uses AWS Neuron SDK for optimized inference on AWS Inferentia2 accelerators.
In this repository, ASSISTment2009 "skill-builder" dataset are used. You need to download the dataset on the following path:
datasets/ASSIST2009/
- Implementation of DKT model using PyTorch
- AWS Neuron optimization for Inferentia2
- Support for ASSIST2009 dataset
- Real-time inference monitoring
- Python 3.8+
- PyTorch 1.12+
- torch-neuronx
- numpy
- pandas
- scikit-learn
# Clone the repository
git clone https://github.com/yourusername/dkt-neuronx.git
cd dkt-neuronx
run dkt_model.ipynb
or dkt_model_ko.ipynb
(Korean) on SageMaker Notebook instance (inf2 or trn1).
The DKT model uses LSTM to trace student knowledge states:
- Input embedding layer
- LSTM layer
- Output layer with sigmoid activation
Contributions are welcome! Please feel free to submit a Pull Request.