Skip to content

Deep Knowledge Tracing (DKT) using PyTorch and AWS Inferentia2 for efficient inference on SageMaker.

Notifications You must be signed in to change notification settings

didhd/dkt-neuronx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep Knowledge Tracing with AWS Neuron

This repository implements Deep Knowledge Tracing (DKT) using PyTorch and AWS Inferentia2 for efficient inference on SageMaker.

Overview

Deep Knowledge Tracing is a machine learning method that models student knowledge over time. This implementation uses AWS Neuron SDK for optimized inference on AWS Inferentia2 accelerators.

In this repository, ASSISTment2009 "skill-builder" dataset are used. You need to download the dataset on the following path:

datasets/ASSIST2009/

Features

  • Implementation of DKT model using PyTorch
  • AWS Neuron optimization for Inferentia2
  • Support for ASSIST2009 dataset
  • Real-time inference monitoring

Requirements

  • Python 3.8+
  • PyTorch 1.12+
  • torch-neuronx
  • numpy
  • pandas
  • scikit-learn

Installation

# Clone the repository
git clone https://github.com/yourusername/dkt-neuronx.git
cd dkt-neuronx

Usage

run dkt_model.ipynb or dkt_model_ko.ipynb(Korean) on SageMaker Notebook instance (inf2 or trn1).

Model Architecture

The DKT model uses LSTM to trace student knowledge states:

  • Input embedding layer
  • LSTM layer
  • Output layer with sigmoid activation

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

About

Deep Knowledge Tracing (DKT) using PyTorch and AWS Inferentia2 for efficient inference on SageMaker.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published