Provide a toolkit for rapidly extracting useful entities from text using various Python packages, including Stanza.
We try to bring the complicated use of existing NLP toolkits down to earth by keeping APIs as simple as possible with best practice.
pip install ner-kit
Example 1: Word segmention
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
sw.download(lang="en")
text='This is a test sentence for stanza. This is another sentence.'
result1=sw.tokenize(text)
sw.print_result(result1)
Example 2: Chinese word segmentation
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
sw.download(lang="zh")
text='我在北京吃苹果!'
result1=sw.tokenize(text,lang='zh')
sw.print_result(result1)
Example 3: Multi-Word Token (MWT) Expansion
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
sw.download(lang="fr")
text='Nous avons atteint la fin du sentier.'
result1=sw.mwt_expand(text,lang='fr')
sw.print_result(result1)
Example 4: POS tagging
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
sw.download(lang='en')
text='I like apple'
result1=sw.tag(text)
sw.print_result(result1)
sw.download_chinese_model()
text='我喜欢苹果'
result2=sw.tag_chinese(text,lang='zh')
sw.print_result(result2)
Example 5: Named Entity Recognition
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
sw.download(lang='en')
sw.download_chinese_model()
text_en = 'I like Beijing!'
result1 = sw.ner(text_en)
sw.print_result(result1)
text='我喜欢北京!'
result2=sw.ner_chinese(text)
sw.print_result(result2)
Example 6: Sentiment Analysis
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
text_en = 'I like Beijing!'
result1 = sw.sentiment(text_en)
sw.print_result(result1)
text_zh='我讨厌苹果!'
result2=sw.sentiment_chinese(text_zh)
sw.print_result(result2)
Example 7: Language detection from text
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
list_text = ['I like Beijing!','我喜欢北京!', "Bonjour le monde!"]
result1 = sw.lang(list_text)
sw.print_result(result1)
Example 8: Language detection from text with a user-defined processing function
from nerkit.StanzaApi import StanzaWrapper
if __name__=="__main__":
sw=StanzaWrapper()
list_text = ['I like Beijing!','我喜欢北京!', "Bonjour le monde!"]
def process(model):# do your own business
doc=model["doc"]
print(f"{doc.sentences[0].dependencies_string()}")
result1 = sw.lang_multi(list_text,func_process=process,download_lang='en,zh,fr')
print(result1)
sw.print_result(result1)
Example 9: Stanza's NER (Legacy use for Java-based Stanford CoreNLP)
from nerkit.StanzaApi import *
# First, set environment variable CORENLP_HOME to the CoreNLP folder
corenlp_root_path=r"stanford-corenlp-4.3.2"
text="我喜欢游览广东孙中山故居景点!"
list_token=get_entity_list(text,corenlp_root_path=corenlp_root_path,language="chinese")
for token in list_token:
print(f"{token['value']}\t{token['pos']}\t{token['ner']}")
Example 10: Stanford CoreNLP (Not official version)
import os
from nerkit.StanfordCoreNLP import get_entity_list
text="我喜欢游览广东孙中山故居景点!"
current_path = os.path.dirname(os.path.realpath(__file__))
res=get_entity_list(text,resource_path=f"{current_path}/stanfordcorenlp/stanford-corenlp-latest/stanford-corenlp-4.3.2")
print(res)
for w,tag in res:
if tag in ['PERSON','ORGANIZATION','LOCATION']:
print(w,tag)
The ner-kit
project is provided by Donghua Chen.