Skip to content

Experiments codes for COLING '22 paper "Augmenting Legal Judgment Prediction with Contrastive Case Relations"

License

Notifications You must be signed in to change notification settings

dgliu/COLING22_CTM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

COLING22_CTM

Experiments codes for the paper:

Dugang Liu, Weihao Du, Lei Li, Weike Pan and Zhong Ming. Augmenting Legal Judgment Prediction with Contrastive Case Relations. To appear in COLING '22.

Please cite our COLING '22 paper if you use our codes. Thanks!


Usage

The execution process of the main experiment:

  • Switch to working directory:
cd COLING22_CTM/CTM_small

cd COLING22_CTM/CTM_big
  • Carry out data exploration and obtain experimental data:
python3 data_exploration.py

python3 get_processed_data.py
python3 generate_data_structure.py

python3 get_processed_data.py -d 'big/'
python3 generate_data_structure.py -d 'big/'
  • Tuning model (searcher='optuna'):

    CUDA_VISIBLE_DEVICES=0 nohup python3 -u tune_parameters.py -tb 'ctm_tuning_0.csv' -y 'config/ctm.yml' -s 0 >ctm_out_0 2>&1 &
    
    
  • Train the model according to the best parameters, save the parameters, and output the results:

    CUDA_VISIBLE_DEVICES=0 python3 reproduce_paper_results.py
    

About

Experiments codes for COLING '22 paper "Augmenting Legal Judgment Prediction with Contrastive Case Relations"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages