Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix compute_gradient to include frozen parameters #156

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions src/george/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,15 +115,15 @@ def compute_gradient(self, *args, **kwargs):

"""
_EPS = 1.254e-5
vector = self.get_parameter_vector()
vector = self.get_parameter_vector(include_frozen=True)
value0 = self.get_value(*args, **kwargs)
grad = np.empty([len(vector)] + list(value0.shape), dtype=np.float64)
for i, v in enumerate(vector):
vector[i] = v + _EPS
self.set_parameter_vector(vector)
self.set_parameter_vector(vector, include_frozen=True)
value = self.get_value(*args, **kwargs)
vector[i] = v
self.set_parameter_vector(vector)
self.set_parameter_vector(vector, include_frozen=True)
grad[i] = (value - value0) / _EPS
return grad

Expand Down
21 changes: 21 additions & 0 deletions tests/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,13 @@ def compute_gradient(self, x):
return dict(m=x, b=np.ones(len(x)))


class LinearWhiteNoiseWithoutGrad(Model):
parameter_names = ("m", "b")

def get_value(self, x):
return self.m * x + self.b


def test_gp_callable_white_noise(N=50, seed=1234):
np.random.seed(seed)
x = np.random.uniform(0, 5)
Expand All @@ -86,6 +93,20 @@ def test_gp_callable_white_noise(N=50, seed=1234):
check_gradient(gp, y)


def test_gp_callable_white_noise_without_grad(N=50, seed=1234):
np.random.seed(seed)
x = np.random.uniform(0, 5)
y = 5 + np.sin(x)
gp = GP(10. * kernels.ExpSquaredKernel(1.3), mean=5.0,
white_noise=LinearWhiteNoiseWithoutGrad(-6, 0.01),
fit_white_noise=True)
gp.compute(x)
check_gradient(gp, y)

gp.freeze_parameter("white_noise:m")
check_gradient(gp, y)


def test_parameters():
kernel = 10 * kernels.ExpSquaredKernel(1.0)
kernel += 0.5 * kernels.RationalQuadraticKernel(log_alpha=0.1, metric=5.0)
Expand Down