The panorama stitching project uses SIFT feature descriptors for key point matching and RANSAC for outlier rejection. The images are blended with distance transformation, resulting in a seamless and coherent panoramic image.
To run the panorama stitching project, ensure you have the following libraries installed:
- numpy
- opencv-python (cv2)
- argparse
- os (standard library)
- math (standard library)
- glob (standard library)
You can install the required libraries using pip:
pip install numpy opencv-python argparse
You can test the given data set using following command or can create custom dataset as follows:
To run stitching:
python3 Wrapper.py --Path $your-path-to-dataset --Scale $scale-factor
Here,
- Path parser will take the path from the current directory to dataset location
- Scale parser can be used if your image size if big, and you want to reduce the size
To create custom dataset:
- create a dataset folder and add all images, name all images in numberical order (be carful of order)
Example of running wrapper on custom dataset:
python3 Wrapper.py --Path ../Data/Set1 --Scale 4
for detailed results check - devsonni.github.io/AutoPano