-
Notifications
You must be signed in to change notification settings - Fork 230
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
api: Add Hicks (sinc) interpolation api #2342
Changes from all commits
cf4b65e
83bbef3
4aadbf8
c4ac44e
4db1120
99448f1
a83fac7
353af4f
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,17 +2,24 @@ | |
from functools import wraps | ||
|
||
import sympy | ||
import numpy as np | ||
from cached_property import cached_property | ||
|
||
try: | ||
from scipy.special import i0 | ||
except ImportError: | ||
from numpy import i0 | ||
|
||
from devito.finite_differences.differentiable import Mul | ||
from devito.finite_differences.elementary import floor | ||
from devito.logger import warning | ||
from devito.symbolics import retrieve_function_carriers, retrieve_functions, INT | ||
from devito.tools import as_tuple, flatten, filter_ordered | ||
from devito.types import (ConditionalDimension, Eq, Inc, Evaluable, Symbol, | ||
CustomDimension) | ||
CustomDimension, SubFunction) | ||
from devito.types.utils import DimensionTuple | ||
|
||
__all__ = ['LinearInterpolator', 'PrecomputedInterpolator'] | ||
__all__ = ['LinearInterpolator', 'PrecomputedInterpolator', 'SincInterpolator'] | ||
|
||
|
||
def check_radius(func): | ||
|
@@ -22,7 +29,7 @@ def wrapper(interp, *args, **kwargs): | |
funcs = set().union(*[retrieve_functions(a) for a in args]) | ||
so = min({f.space_order for f in funcs if not f.is_SparseFunction} or {r}) | ||
if so < r: | ||
raise ValueError("Space order %d smaller than interpolation r %d" % (so, r)) | ||
raise ValueError("Space order %d too small for interpolation r %d" % (so, r)) | ||
return func(interp, *args, **kwargs) | ||
return wrapper | ||
|
||
|
@@ -125,6 +132,8 @@ class GenericInterpolator(ABC): | |
Abstract base class defining the interface for an interpolator. | ||
""" | ||
|
||
_name = "generic" | ||
|
||
@abstractmethod | ||
def inject(self, *args, **kwargs): | ||
pass | ||
|
@@ -133,6 +142,13 @@ def inject(self, *args, **kwargs): | |
def interpolate(self, *args, **kwargs): | ||
pass | ||
|
||
@property | ||
def name(self): | ||
return self._name | ||
|
||
def _arg_defaults(self, **args): | ||
return {} | ||
|
||
|
||
class WeightedInterpolator(GenericInterpolator): | ||
|
||
|
@@ -142,6 +158,8 @@ class WeightedInterpolator(GenericInterpolator): | |
and multiplied at a given point: `w[x, y] = wx[x] * wy[y]` | ||
""" | ||
|
||
_name = 'weighted' | ||
|
||
def __init__(self, sfunction): | ||
self.sfunction = sfunction | ||
|
||
|
@@ -204,7 +222,7 @@ def _positions(self, implicit_dims): | |
return [Eq(v, INT(floor(k)), implicit_dims=implicit_dims) | ||
for k, v in self.sfunction._position_map.items()] | ||
|
||
def _interp_idx(self, variables, implicit_dims=None): | ||
def _interp_idx(self, variables, implicit_dims=None, pos_only=()): | ||
""" | ||
Generate interpolation indices for the DiscreteFunctions in ``variables``. | ||
""" | ||
|
@@ -223,6 +241,12 @@ def _interp_idx(self, variables, implicit_dims=None): | |
for ((k, c), p) in zip(mapper.items(), pos)}) | ||
for v in variables} | ||
|
||
# Position only replacement, not radius dependent. | ||
# E.g src.inject(vp(x)*src) needs to use vp[posx] at all points | ||
# not vp[posx + rx] | ||
idx_subs.update({v: v.subs({k: p for (k, p) in zip(mapper, pos)}) | ||
for v in pos_only}) | ||
|
||
return idx_subs, temps | ||
|
||
@check_radius | ||
|
@@ -347,10 +371,9 @@ def _inject(self, field, expr, implicit_dims=None): | |
# summing temp that wouldn't allow collapsing | ||
implicit_dims = implicit_dims + tuple(r.parent for r in self._rdim) | ||
|
||
variables = variables + list(fields) | ||
|
||
# List of indirection indices for all adjacent grid points | ||
idx_subs, temps = self._interp_idx(variables, implicit_dims=implicit_dims) | ||
idx_subs, temps = self._interp_idx(fields, implicit_dims=implicit_dims, | ||
pos_only=variables) | ||
|
||
# Substitute coordinate base symbols into the interpolation coefficients | ||
eqns = [Inc(_field.xreplace(idx_subs), | ||
|
@@ -370,6 +393,9 @@ class LinearInterpolator(WeightedInterpolator): | |
---------- | ||
sfunction: The SparseFunction that this Interpolator operates on. | ||
""" | ||
|
||
_name = 'linear' | ||
|
||
@property | ||
def _weights(self): | ||
c = [(1 - p) * (1 - r) + p * r | ||
|
@@ -403,11 +429,13 @@ class PrecomputedInterpolator(WeightedInterpolator): | |
sfunction: The SparseFunction that this Interpolator operates on. | ||
""" | ||
|
||
_name = 'precomp' | ||
|
||
def _positions(self, implicit_dims): | ||
if self.sfunction.gridpoints is None: | ||
return super()._positions(implicit_dims) | ||
# No position temp as we have directly the gridpoints | ||
return [Eq(p, k, implicit_dims=implicit_dims) | ||
return [Eq(p, floor(k), implicit_dims=implicit_dims) | ||
for (k, p) in self.sfunction._position_map.items()] | ||
|
||
@property | ||
|
@@ -421,3 +449,70 @@ def _weights(self): | |
for (ri, rd) in enumerate(self._rdim)] | ||
return Mul(*[self.interpolation_coeffs.subs(mapper) | ||
for mapper in mappers]) | ||
|
||
|
||
class SincInterpolator(PrecomputedInterpolator): | ||
""" | ||
Hicks windowed sinc interpolation scheme. | ||
|
||
Arbitrary source and receiver positioning in finite‐difference schemes | ||
using Kaiser windowed sinc functions | ||
|
||
https://library.seg.org/doi/10.1190/1.1451454 | ||
|
||
""" | ||
|
||
_name = 'sinc' | ||
|
||
# Table 1 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What's Table 2? u mean Table 1 in the paper? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes Table 1 in the paper |
||
_b_table = {2: 2.94, 3: 4.53, | ||
4: 4.14, 5: 5.26, 6: 6.40, | ||
7: 7.51, 8: 8.56, 9: 9.56, 10: 10.64} | ||
|
||
def __init__(self, sfunction): | ||
if i0 is np.i0: | ||
warning(""" | ||
Using `numpy.i0`. We (and numpy) recommend to install scipy to improve the performance | ||
of the SincInterpolator that uses i0 (Bessel function). | ||
""") | ||
super().__init__(sfunction) | ||
|
||
@cached_property | ||
def interpolation_coeffs(self): | ||
coeffs = {} | ||
shape = (self.sfunction.npoint, 2 * self.r) | ||
for r in self._rdim: | ||
dimensions = (self.sfunction._sparse_dim, r.parent) | ||
sf = SubFunction(name="wsinc%s" % r.name, dtype=self.sfunction.dtype, | ||
shape=shape, dimensions=dimensions, | ||
space_order=0, alias=self.sfunction.alias, | ||
distributor=self.sfunction._distributor, | ||
parent=self.sfunction) | ||
coeffs[r] = sf | ||
return coeffs | ||
|
||
@property | ||
def _weights(self): | ||
return Mul(*[w._subs(rd, rd-rd.parent.symbolic_min) | ||
for (rd, w) in self.interpolation_coeffs.items()]) | ||
|
||
def _arg_defaults(self, coords=None, sfunc=None): | ||
args = {} | ||
b = self._b_table[self.r] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Does this need a catch for There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It will just throw a key-error but can add a check (I doubt anyone will run it this high that's a 20x20x20 cube in 3d super expensive) There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. agree to add a check. Users can be surprising... |
||
b0 = i0(b) | ||
if coords is None or sfunc is None: | ||
raise ValueError("No coordinates or sparse function provided") | ||
# Coords to indices | ||
coords = coords / np.array(sfunc.grid.spacing) | ||
coords = coords - np.floor(coords) | ||
|
||
# Precompute sinc | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think this wants a There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I haven't seen any drastic slow compute since it's numpified so not sure want to force user to be like "hey here is a warning should I nitpick here" |
||
for j, r in enumerate(self._rdim): | ||
data = np.zeros((coords.shape[0], 2*self.r), dtype=sfunc.dtype) | ||
for ri in range(2*self.r): | ||
rpos = ri - self.r + 1 - coords[:, j] | ||
num = i0(b*np.sqrt(1 - (rpos/self.r)**2)) | ||
data[:, ri] = num / b0 * np.sinc(rpos) | ||
args[self.interpolation_coeffs[r].name] = data | ||
|
||
return args |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
if we want this method here it would be cleaner to have this class inhereting from ArgProvider.
Perhaps we move it into a subclass?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
No, the interpolator isn't an arg provide, its sparse function is and is calling it only.