- Features
- Installation
- Configuration
- Documentation
- Running in docker
- Running in Kubernetes
- Configuration via environment variables
- Plugins
- Examples
- Consuming messages
- Producing messages
- Avro support
- Protobuf support
- Create topics
- Altering topics
- Altering partitions
- Clone topic
- Consumer groups
- Delete Records from a topics
- Create consumer groups
- Clone consumer group
- Reset consumer group offsets
- Delete consumer group offsets
- Delete consumer groups
- ACL Management
- Getting Brokers
- Describe Broker
- Development
You can install the pre-compiled binary or compile from source.
homebrew:
# install tap repository once
brew tap deviceinsight/packages
# install kafkactl
brew install deviceinsight/packages/kafkactl
# upgrade kafkactl
brew upgrade deviceinsight/packages/kafkactl
winget:
winget install kafkactl
deb/rpm:
Download the .deb or .rpm from the releases page and install with dpkg -i and rpm -i respectively.
yay (AUR)
There’s a kafkactl AUR package available for Arch. Install it with your AUR helper of choice (e.g. yay):
snap:
snap install kafkactl
yay -S kafkactl
manually:
Download the pre-compiled binaries from the releases page and copy to the desired location.
If no config file is found, a default config is generated in $HOME/.config/kafkactl/config.yml
.
This configuration is suitable to get started with a single node cluster on a local machine.
Create $HOME/.config/kafkactl/config.yml
with a definition of contexts that should be available
contexts:
default:
brokers:
- localhost:9092
remote-cluster:
brokers:
- remote-cluster001:9092
- remote-cluster002:9092
- remote-cluster003:9092
# optional: tls config
tls:
enabled: true
ca: my-ca
cert: my-cert
certKey: my-key
# set insecure to true to ignore all tls verification (defaults to false)
insecure: false
# optional: sasl support
sasl:
enabled: true
username: admin
password: admin
# optional configure sasl mechanism as plaintext, scram-sha256, scram-sha512, oauth (defaults to plaintext)
mechanism: oauth
# optional tokenProvider configuration (only used for 'sasl.mechanism=oauth')
tokenprovider:
# plugin to use as token provider implementation (see plugin section)
plugin: azure
# optional: additional options passed to the plugin
options:
key: value
# optional: access clusters running kubernetes
kubernetes:
enabled: false
binary: kubectl #optional
kubeConfig: ~/.kube/config #optional
kubeContext: my-cluster
namespace: my-namespace
# optional: docker image to use (the tag of the image will be suffixed by `-scratch` or `-ubuntu` depending on command)
image: private.registry.com/deviceinsight/kafkactl
# optional: secret for private docker registry
imagePullSecret: registry-secret
# optional: serviceAccount to use for the pod
serviceAccount: my-service-account
# optional: keep pod after exit (can be set to true for debugging)
keepPod: true
# optional: labels to add to the pod
labels:
key: value
# optional: annotations to add to the pod
annotations:
key: value
# optional: nodeSelector to add to the pod
nodeSelector:
key: value
# optional: affinity to add to the pod
affinity:
# note: other types of affinity also supported
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: "<key>"
operator: "<operator>"
values: [ "<value>" ]
# optional: tolerations to add to the pod
tolerations:
- key: "<key>"
operator: "<operator>"
value: "<value>"
effect: "<effect>"
# optional: clientID config (defaults to kafkactl-{username})
clientID: my-client-id
# optional: kafkaVersion (defaults to 2.5.0)
kafkaVersion: 1.1.1
# optional: timeout for admin requests (defaults to 3s)
requestTimeout: 10s
# optional: avro schema registry
avro:
schemaRegistry: localhost:8081
# optional: configure codec for (de)serialization as standard,avro (defaults to standard)
# see: https://github.com/deviceinsight/kafkactl/issues/123
jsonCodec: avro
# optional: timeout for requests (defaults to 5s)
requestTimeout: 10s
# optional: basic auth credentials
username: admin
password: admin
# optional: tls config for avro
tls:
enabled: true
ca: my-ca
cert: my-cert
certKey: my-key
# set insecure to true to ignore all tls verification (defaults to false)
insecure: false
# optional: default protobuf messages search paths
protobuf:
importPaths:
- "/usr/include/protobuf"
protoFiles:
- "someMessage.proto"
- "otherMessage.proto"
protosetFiles:
- "/usr/include/protoset/other.protoset"
producer:
# optional: changes the default partitioner
partitioner: "hash"
# optional: changes default required acks in produce request
# see: https://pkg.go.dev/github.com/IBM/sarama?utm_source=godoc#RequiredAcks
requiredAcks: "WaitForAll"
# optional: maximum permitted size of a message (defaults to 1000000)
maxMessageBytes: 1000000
consumer:
# optional: isolationLevel (defaults to ReadCommitted)
isolationLevel: ReadUncommitted
# optional for project config files
current-context: default
The config file location is resolved by
-
checking for a provided commandline argument:
--config-file=$PATH_TO_CONFIG
-
evaluating the environment variable:
export KAFKA_CTL_CONFIG=$PATH_TO_CONFIG
-
checking for a project config file in the working directory (see Project config files)
-
as default the config file is looked up from one of the following locations:
-
$HOME/.config/kafkactl/config.yml
-
$HOME/.kafkactl/config.yml
-
$APPDATA/kafkactl/config.yml
-
$SNAP_REAL_HOME/.kafkactl/config.yml
-
$SNAP_DATA/kafkactl/config.yml
-
/etc/kafkactl/config.yml
-
In addition to the config file locations above, kafkactl allows to create a config file on project level. A project config file is meant to be placed at the root level of a git repo and declares the kafka configuration for this repository/project.
In order to identify the config file as belonging to kafkactl the following names can be used:
-
kafkactl.yml
-
.kafkactl.yml
During initialization kafkactl starts from the current working directory and recursively looks for a project level
config file. The recursive lookup ends at the boundary of a git repository (i.e. if a .git
folder is found).
This way, kafkactl can be used conveniently anywhere in the git repository.
Additionally, project config files have a special feature to use them read-only. Topically, if you configure more than
one context in a config file, and you switch the context with kafkactl config use-context xy
this will lead to a write
operation on the config file to save the current context.
In order to avoid this for project config files, one can just omit the current-context
parameter from the config file.
In this case kafkactl will delegate read and write operations for the current context to the next configuration file
according to the config file read order.
NOTE: if you installed via snap, bash completion should work automatically.
source <(kafkactl completion bash)
To load completions for each session, execute once: Linux:
kafkactl completion bash > /etc/bash_completion.d/kafkactl
MacOS:
kafkactl completion bash > /usr/local/etc/bash_completion.d/kafkactl
If shell completion is not already enabled in your environment, you will need to enable it. You can execute the following once:
echo "autoload -U compinit; compinit" >> ~/.zshrc
To load completions for each session, execute once:
kafkactl completion zsh > "${fpath[1]}/_kafkactl"
You will need to start a new shell for this setup to take effect.
Assuming your Kafka brokers are accessible under kafka1:9092
and kafka2:9092
, you can list topics by running:
docker run --env BROKERS="kafka1:9092 kafka2:9092" deviceinsight/kafkactl:latest get topics
If a more elaborate config is needed, you can mount it as a volume:
docker run -v /absolute/path/to/config.yml:/etc/kafkactl/config.yml deviceinsight/kafkactl get topics
If your kafka cluster is not directly accessible from your machine, but it is accessible from a kubernetes cluster
which in turn is accessible via kubectl
from your machine you can configure kubernetes support:
contexts:
kafka-cluster:
brokers:
- broker1:9092
- broker2:9092
kubernetes:
enabled: true
binary: kubectl #optional
kubeContext: k8s-cluster
namespace: k8s-namespace
Instead of directly talking to kafka brokers a kafkactl docker image is deployed as a pod into the kubernetes cluster, and the defined namespace. Standard-Input and Standard-Output are then wired between the pod and your shell running kafkactl.
There are two options:
-
You can run
kafkactl attach
with your kubernetes cluster configured. This will usekubectl run
to create a pod in the configured kubeContext/namespace which runs an image of kafkactl and gives you abash
into the container. Standard-in is piped to the pod and standard-out, standard-err directly to your shell. You even get auto-completion. -
You can run any other kafkactl command with your kubernetes cluster configured. Instead of directly querying the cluster a pod is deployed, and input/output are wired between pod and your shell.
The names of the brokers have to match the service names used to access kafka in your cluster. A command like this should give you this information:
kubectl get svc | grep kafka
a bash available. The second option uses a docker image build from scratch and should therefore be quicker. Which option is more suitable, will depend on your use-case.
Every key in the config.yml
can be overwritten via environment variables. The corresponding environment variable
for a key can be found by applying the following rules:
-
replace
.
by_
-
replace
-
by_
-
write the key name in ALL CAPS
e.g. the key contexts.default.tls.certKey
has the corresponding environment variable CONTEXTS_DEFAULT_TLS_CERTKEY
.
NOTE: an array variable can be written using whitespace as delimiter. For example BROKERS
can be provided as
BROKERS="broker1:9092 broker2:9092 broker3:9092"
.
If environment variables for the default
context should be set, the prefix CONTEXTS_DEFAULT_
can be omitted.
So, instead of CONTEXTS_DEFAULT_TLS_CERTKEY
one can also set TLS_CERTKEY
.
See root_test.go for more examples.
kafkactl supports plugins to cope with specifics when using Kafka-compatible clusters available from cloud providers such as Azure or AWS.
At the moment, plugins can only be used to implement a tokenProvider
for oauth authentication.
In the future, plugins might implement additional commands to query data or configuration which is not part of the Kafka-API. One example would be Eventhub consumer groups/offsets for Azure.
See the plugin documentation for additional documentation and usage examples.
Available plugins:
Consuming messages from a topic can be done with:
kafkactl consume my-topic
In order to consume starting from the oldest offset use:
kafkactl consume my-topic --from-beginning
The following example prints message key
and timestamp
as well as partition
and offset
in yaml
format:
kafkactl consume my-topic --print-keys --print-timestamps -o yaml
To print partition in default output format use:
kafkactl consume my-topic --print-partitions
Headers of kafka messages can be printed with the parameter --print-headers
e.g.:
kafkactl consume my-topic --print-headers -o yaml
If one is only interested in the last n
messages this can be achieved by --tail
e.g.:
kafkactl consume my-topic --tail=5
The consumer can be stopped when the latest offset is reached using --exit
parameter e.g.:
kafkactl consume my-topic --from-beginning --exit
The consumer can compute the offset it starts from using a timestamp:
kafkactl consume my-topic --from-timestamp 1384216367189
kafkactl consume my-topic --from-timestamp 2014-04-26T17:24:37.123Z
kafkactl consume my-topic --from-timestamp 2014-04-26T17:24:37.123
kafkactl consume my-topic --from-timestamp 2009-08-12T22:15:09Z
kafkactl consume my-topic --from-timestamp 2017-07-19T03:21:51
kafkactl consume my-topic --from-timestamp 2013-04-01T22:43
kafkactl consume my-topic --from-timestamp 2014-04-26
The from-timestamp
parameter supports different timestamp formats. It can either be a number representing the epoch milliseconds
or a string with a timestamp in one of the supported date formats.
NOTE: --from-timestamp
is not designed to schedule the beginning of consumer’s consumption. The offset corresponding to the timestamp is computed at the beginning of the process. So if you set it to a date in the future, the consumer will start from the latest offset.
The consumer can be stopped when the offset corresponding to a particular timestamp is reached:
kafkactl consume my-topic --from-timestamp 2017-07-19T03:30:00 --to-timestamp 2017-07-19T04:30:00
The to-timestamp
parameter supports the same formats as from-timestamp
.
NOTE: --to-timestamp
is not designed to schedule the end of consumer’s consumption. The offset corresponding to the timestamp is computed at the beginning of the process. So if you set it to a date in the future, the consumer will stop at the current latest offset.
The following example prints keys in hex and values in base64:
kafkactl consume my-topic --print-keys --key-encoding=hex --value-encoding=base64
The consumer can convert protobuf messages to JSON in keys (optional) and values:
kafkactl consume my-topic --value-proto-type MyTopicValue --key-proto-type MyTopicKey --proto-file kafkamsg.proto
To join a consumer group and consume messages as a member of the group:
kafkactl consume my-topic --group my-consumer-group
If you want to limit the number of messages that will be read, specify --max-messages
:
kafkactl consume my-topic --max-messages 2
Producing messages can be done in multiple ways. If we want to produce a message with key='my-key'
,
value='my-value'
to the topic my-topic
this can be achieved with one of the following commands:
echo "my-key#my-value" | kafkactl produce my-topic --separator=#
echo "my-value" | kafkactl produce my-topic --key=my-key
kafkactl produce my-topic --key=my-key --value=my-value
If we have a file containing messages where each line contains key
and value
separated by #
, the file can be
used as input to produce messages to topic my-topic
:
cat myfile | kafkactl produce my-topic --separator=#
The same can be accomplished without piping the file to stdin with the --file
parameter:
kafkactl produce my-topic --separator=# --file=myfile
If the messages in the input file need to be split by a different delimiter than \n
a custom line separator can be provided:
kafkactl produce my-topic --separator=# --lineSeparator=|| --file=myfile
NOTE: if the file was generated with kafkactl consume --print-keys --print-timestamps my-topic
the produce
command is able to detect the message timestamp in the input and will ignore it.
It is also possible to produce messages in json format:
# each line in myfile.json is expected to contain a json object with fields key, value
kafkactl produce my-topic --file=myfile.json --input-format=json
cat myfile.json | kafkactl produce my-topic --input-format=json
the number of messages produced per second can be controlled with the --rate
parameter:
cat myfile | kafkactl produce my-topic --separator=# --rate=200
It is also possible to specify the partition to insert the message:
kafkactl produce my-topic --key=my-key --value=my-value --partition=2
Additionally, a different partitioning scheme can be used. When a key
is provided the default partitioner
uses the hash
of the key
to assign a partition. So the same key
will end up in the same partition:
# the following 3 messages will all be inserted to the same partition
kafkactl produce my-topic --key=my-key --value=my-value
kafkactl produce my-topic --key=my-key --value=my-value
kafkactl produce my-topic --key=my-key --value=my-value
# the following 3 messages will probably be inserted to different partitions
kafkactl produce my-topic --key=my-key --value=my-value --partitioner=random
kafkactl produce my-topic --key=my-key --value=my-value --partitioner=random
kafkactl produce my-topic --key=my-key --value=my-value --partitioner=random
Message headers can also be written:
kafkactl produce my-topic --key=my-key --value=my-value --header key1:value1 --header key2:value\:2
The following example writes the key from base64 and value from hex:
kafkactl produce my-topic --key=dGVzdC1rZXk= --key-encoding=base64 --value=0000000000000000 --value-encoding=hex
You can control how many replica acknowledgements are needed for a response:
kafkactl produce my-topic --key=my-key --value=my-value --required-acks=WaitForAll
Producing null values (tombstone record) is also possible:
kafkactl produce my-topic --null-value
Producing protobuf message converted from JSON:
kafkactl produce my-topic --key='{"keyField":123}' --key-proto-type MyKeyMessage --value='{"valueField":"value"}' --value-proto-type MyValueMessage --proto-file kafkamsg.proto
A more complex protobuf message converted from a multi-line JSON string can be produced using a file input with custom separators.
For example, if you have the following protobuf definition (complex.proto
):
syntax = "proto3";
import "google/protobuf/timestamp.proto";
message ComplexMessage {
CustomerInfo customer_info = 1;
DeviceInfo device_info = 2;
}
message CustomerInfo {
string customer_id = 1;
string name = 2;
}
message DeviceInfo {
string serial = 1;
google.protobuf.Timestamp last_update = 2;
}
And you have the following file (complex-msg.txt
) that contains the key and value of the message:
msg-key##
{
"customer_info": {
"customer_id": "12345",
"name": "Bob"
},
"device_info": {
"serial": "abcde",
"last_update": "2024-03-02T07:01:02.000Z"
}
}
+++
The command to produce the protobuf message using sample protobuf definition and input file would be:
kafkactl produce my-topic --value-proto-type=ComplexMessage --proto-file=complex.proto --lineSeparator='+++' --separator='##' --file=complex-msg.txt
In order to enable avro support you just have to add the schema registry to your configuration:
contexts:
localhost:
avro:
schemaRegistry: localhost:8081
kafkactl
will lookup the topic in the schema registry in order to determine if key or value needs to be avro encoded.
If producing with the latest schemaVersion
is sufficient, no additional configuration is needed an kafkactl
handles
this automatically.
If however one needs to produce an older schemaVersion
this can be achieved by providing the parameters keySchemaVersion
, valueSchemaVersion
.
# create a topic
kafkactl create topic avro_topic
# add a schema for the topic value
curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \
--data '{"schema": "{\"type\": \"record\", \"name\": \"LongList\", \"fields\" : [{\"name\": \"next\", \"type\": [\"null\", \"LongList\"], \"default\": null}]}"}' \
http://localhost:8081/subjects/avro_topic-value/versions
# produce a message
kafkactl produce avro_topic --value {\"next\":{\"LongList\":{}}}
# consume the message
kafkactl consume avro_topic --from-beginning --print-schema -o yaml
As for producing kafkactl
will also lookup the topic in the schema registry to determine if key or value needs to be
decoded with an avro schema.
The consume
command handles this automatically and no configuration is needed.
An additional parameter print-schema
can be provided to display the schema used for decoding.
kafkactl
can consume and produce protobuf-encoded messages. In order to enable protobuf serialization/deserialization
you should add flag --value-proto-type
and optionally --key-proto-type
(if keys encoded in protobuf format)
with type name. Protobuf-encoded messages are mapped with pbjson.
kafkactl
will search messages in following order:
-
Protoset files specified in
--protoset-file
flag -
Protoset files specified in
context.protobuf.protosetFiles
config value -
Proto files specified in
--proto-file
flag -
Proto files specified in
context.protobuf.protoFiles
config value
Proto files may require some dependencies in import
sections. To specify additional lookup paths use
--proto-import-path
flag or context.protobuf.importPaths
config value.
If provided message types was not found kafkactl
will return error.
Note that if you want to use raw proto files protoc
installation don’t need to be installed.
Also note that protoset files must be compiled with included imports:
protoc -o kafkamsg.protoset --include_imports kafkamsg.proto
Assume you have following proto schema in kafkamsg.proto
:
syntax = "proto3";
import "google/protobuf/timestamp.proto";
message TopicMessage {
google.protobuf.Timestamp produced_at = 1;
int64 num = 2;
}
message TopicKey {
float fvalue = 1;
}
"well-known" google/protobuf
types are included so no additional proto files needed.
To produce message run
kafkactl produce <topic> --key '{"fvalue":1.2}' --key-proto-type TopicKey --value '{"producedAt":"2021-12-01T14:10:12Z","num":"1"}' --value-proto-type TopicValue --proto-file kafkamsg.proto
or with protoset
kafkactl produce <topic> --key '{"fvalue":1.2}' --key-proto-type TopicKey --value '{"producedAt":"2021-12-01T14:10:12Z","num":"1"}' --value-proto-type TopicValue --protoset-file kafkamsg.protoset
To consume messages run
kafkactl consume <topic> --key-proto-type TopicKey --value-proto-type TopicValue --proto-file kafkamsg.proto
or with protoset
kafkactl consume <topic> --key-proto-type TopicKey --value-proto-type TopicValue --protoset-file kafkamsg.protoset
The create topic
allows you to create one or multiple topics.
Basic usage:
kafkactl create topic my-topic
The partition count can be specified with:
kafkactl create topic my-topic --partitions 32
The replication factor can be specified with:
kafkactl create topic my-topic --replication-factor 3
Configs can also be provided:
kafkactl create topic my-topic --config retention.ms=3600000 --config=cleanup.policy=compact
The topic configuration can also be taken from an existing topic using the following:
kafkactl describe topic my-topic -o json > my-topic-config.json
kafkactl create topic my-topic-clone --file my-topic-config.json
Using the alter topic
command allows you to change the partition count, replication factor and topic-level
configurations of an existing topic.
The partition count can be increased with:
kafkactl alter topic my-topic --partitions 32
The replication factor can be altered with:
kafkactl alter topic my-topic --replication-factor 2
broker balanced. If you need more control over the assigned replicas use
alter partition
directly.
The topic configs can be edited by supplying key value pairs as follows:
kafkactl alter topic my-topic --config retention.ms=3600000 --config cleanup.policy=compact
The assigned replicas of a partition can directly be altered with:
# set brokers 102,103 as replicas for partition 3 of topic my-topic
kafkactl alter partition my-topic 3 -r 102,103
New topic may be created from existing topic as follows:
kafkactl clone topic source-topic target-topic
Source topic must exist, target topic must not exist.
kafkactl
clones partitions count, replication factor and config entries.
In order to get a list of consumer groups the get consumer-groups
command can be used:
# all available consumer groups
kafkactl get consumer-groups
# only consumer groups for a single topic
kafkactl get consumer-groups --topic my-topic
# using command alias
kafkactl get cg
To get detailed information about the consumer group use describe consumer-group
. If the parameter --partitions
is provided details will be printed for each partition otherwise the partitions are aggregated to the clients.
# describe a consumer group
kafkactl describe consumer-group my-group
# show partition details only for partitions with lag
kafkactl describe consumer-group my-group --only-with-lag
# show details only for a single topic
kafkactl describe consumer-group my-group --topic my-topic
# using command alias
kafkactl describe cg my-group
Command to be used to delete records from partition, which have an offset smaller than the provided offset.
# delete records with offset < 123 from partition 0 and offset < 456 from partition 1
kafkactl delete records my-topic --offset 0=123 --offset 1=456
A consumer-group can be created as follows:
# create group with offset for all partitions set to oldest
kafkactl create consumer-group my-group --topic my-topic --oldest
# create group with offset for all partitions set to newest
kafkactl create consumer-group my-group --topic my-topic --newest
# create group with offset for a single partition set to specific offset
kafkactl create consumer-group my-group --topic my-topic --partition 5 --offset 100
# create group for multiple topics with offset for all partitions set to oldest
kafkactl create consumer-group my-group --topic my-topic-a --topic my-topic-b --oldest
A consumer group may be created as clone of another consumer group as follows:
kafkactl clone consumer-group source-group target-group
Source group must exist and have committed offsets. Target group must not exist or don’t have committed offsets.
kafkactl
clones topic assignment and partition offsets.
in order to ensure the reset does what it is expected, per default only
the results are printed without actually executing it. Use the additional parameter --execute
to perform the reset.
# reset offset of for all partitions to oldest offset
kafkactl reset offset my-group --topic my-topic --oldest
# reset offset of for all partitions to newest offset
kafkactl reset offset my-group --topic my-topic --newest
# reset offset for a single partition to specific offset
kafkactl reset offset my-group --topic my-topic --partition 5 --offset 100
# reset offset to newest for all topics in the group
kafkactl reset offset my-group --all-topics --newest
# reset offset of for all partitions on multiple topics to oldest offset
kafkactl reset offset my-group --topic my-topic-a --topic my-topic-b --oldest
# reset offset to offset at a given timestamp(epoch)/datetime
kafkactl reset offset my-group --topic my-topic-a --to-datetime 2014-04-26T17:24:37.123Z
# reset offset to offset at a given timestamp(epoch)/datetime
kafkactl reset offset my-group --topic my-topic-a --to-datetime 1697726906352
In order to delete a consumer group offset use delete offset
# delete offset for all partitions of topic my-topic
kafkactl delete offset my-group --topic my-topic
# delete offset for partition 1 of topic my-topic
kafkactl delete offset my-group --topic my-topic --partition 1
In order to delete a consumer group or a list of consumer groups use delete consumer-group
# delete consumer group my-group
kafkactl delete consumer-group my-group
Available ACL operations are documented here.
# create an acl that allows topic read for a user 'consumer'
kafkactl create acl --topic my-topic --operation read --principal User:consumer --allow
# create an acl that denies topic write for a user 'consumer' coming from a specific host
kafkactl create acl --topic my-topic --operation write --host 1.2.3.4 --principal User:consumer --deny
# allow multiple operations
kafkactl create acl --topic my-topic --operation read --operation describe --principal User:consumer --allow
# allow on all topics with prefix common prefix
kafkactl create acl --topic my-prefix --pattern prefixed --operation read --principal User:consumer --allow
# list all acl
kafkactl get acl
# list all acl (alias command)
kafkactl get access-control-list
# filter only topic resources
kafkactl get acl --topics
# filter only consumer group resources with operation read
kafkactl get acl --groups --operation read
# delete all topic read acls
kafkactl delete acl --topics --operation read --pattern any
# delete all topic acls for any operation
kafkactl delete acl --topics --operation any --pattern any
# delete all cluster acls for any operation
kafkactl delete acl --cluster --operation any --pattern any
# delete all consumer-group acls with operation describe, patternType prefixed and permissionType allow
kafkactl delete acl --groups --operation describe --pattern prefixed --allow
To get the list of brokers of a kafka cluster use get brokers
# get the list of brokers
kafkactl get brokers
In order to see linter errors before commit, add the following pre-commit hook:
pip install --user pre-commit
pre-commit install
# checkout locally
PULL_REQUEST_ID=123
LOCAL_BRANCH_NAME=feature/abc
git fetch origin pull/${PULL_REQUEST_ID}/head:${LOCAL_BRANCH_NAME}
git checkout ${LOCAL_BRANCH_NAME}
# push to PR
NAME=username
REMOTE_BRANCH_NAME=abc
git remote add $NAME git@github.com:$NAME/kafkactl.git
git push $NAME ${LOCAL_BRANCH_NAME}:${REMOTE_BRANCH_NAME}