-
Notifications
You must be signed in to change notification settings - Fork 177
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
|
||
import pytest | ||
|
||
import deepspeed | ||
import torch | ||
from deepspeed.inference.v2.checkpoint import ( | ||
CheckpointEngineBase, | ||
HuggingFaceCheckpointEngine, | ||
) | ||
from transformers import AutoConfig, AutoModel, GenerationConfig | ||
from typing import Iterable, Tuple | ||
|
||
|
||
class RandomWeightsCheckpointEngine(CheckpointEngineBase): | ||
|
||
# When using AutoModel.from_config() to load the model, the layer names are | ||
# often missing a prefix. We default to adding "model." as the prefix, but | ||
# others can be specified here. | ||
layer_prefix_map = {"falcon": "transformer."} | ||
|
||
# When using AutoModel.from_config() to load the model, the lm_head layer is | ||
# not generated. We default to populating this with the | ||
# "embed_tokens.weight" layer, but others can be specified here. | ||
lm_head_layer_map = {"falcon": "word_embeddings.weight"} | ||
|
||
def __init__(self, model_name_or_path: str, auth_token: str = None) -> None: | ||
self.model_name_or_path = model_name_or_path | ||
self.model_config = AutoConfig.from_pretrained(self.model_name_or_path) | ||
if hasattr(self.model_config, "max_position_embeddings"): | ||
self.model_config.max_seq_length = self.model_config.max_position_embeddings | ||
else: | ||
try: | ||
generation_config = GenerationConfig.from_pretrained( | ||
self.model_name_or_path) | ||
self.model_config.max_seq_length = generation_config.max_length | ||
except OSError: | ||
self.model_config.max_seq_length = 2048 | ||
|
||
def _get_layer_prefix(self) -> str: | ||
for model_type, prefix in self.layer_prefix_map.items(): | ||
if model_type in self.model_name_or_path.lower(): | ||
return prefix | ||
return "model." | ||
|
||
def _get_lm_head_layer(self) -> str: | ||
for model_type, layer in self.lm_head_layer_map.items(): | ||
if model_type in self.model_name_or_path.lower(): | ||
return layer | ||
return "embed_tokens.weight" | ||
|
||
def parameters(self) -> Iterable[Tuple[str, torch.Tensor]]: | ||
layer_prefix = self._get_layer_prefix() | ||
lm_head_layer = self._get_lm_head_layer() | ||
|
||
# Load with meta device is faster | ||
with deepspeed.OnDevice(dtype=torch.float16, device="meta"): | ||
model = AutoModel.from_config(self.model_config) | ||
|
||
for param_name, param in model.state_dict().items(): | ||
yield layer_prefix + param_name, torch.zeros(param.shape) | ||
if param_name == lm_head_layer: | ||
yield "lm_head.weight", torch.zeros(param.shape) | ||
|
||
|
||
@pytest.fixture(scope="module", autouse=True) | ||
def inject_checkpoint_engine(): | ||
# Inject the random weihts checkpoint engine | ||
deepspeed.inference.v2.engine_factory.HuggingFaceCheckpointEngine = ( | ||
RandomWeightsCheckpointEngine) | ||
yield None | ||
# Restore the original checkpoint engine | ||
deepspeed.inference.v2.engine_factory.HuggingFaceCheckpointEngine = ( | ||
HuggingFaceCheckpointEngine) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"model_name", | ||
[ | ||
"tiiuae/falcon-7b", | ||
"NousResearch/Llama-2-7b-hf", | ||
"mistralai/Mistral-7B-v0.1", | ||
"cloudyu/Mixtral_11Bx2_MoE_19B", | ||
"facebook/opt-125m", | ||
], | ||
ids=["falcon", | ||
"llama", | ||
"mistral", | ||
"mixtral", | ||
"opt"], | ||
) | ||
def test_model(pipeline, query): | ||
outputs = pipeline(query, max_new_tokens=16) | ||
assert outputs[0], "output is empty" |