Skip to content

deepakn94/tensorflow-benchmarks

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ResNets for ImageNet on TensorFlow

To train a ResNet, run,

python3 tf_cnn_benchmarks.py --model=resnet50 --data_dir=../../../../data/imagenet/
                             --checkpoint_dir=/lfs/1/deepak/checkpoints/resnet50_lr=0.05
                             --num_batches=1800000 --subset=train --learning_rate=0.05
                             --learning_rate_decay_factor=0.1 --num_epochs_per_decay=30
                             --optimizer=momentum --weight_decay=0.0001

This command produces model checkpoints written after every epoch. To evaluate each of these checkpoints, run,

python3 eval_checkpoints.py -i /lfs/1/deepak/checkpoints/resnet50_lr=0.05/
                            -c "python tf_cnn_benchmarks.py --model=resnet50 --eval --data_dir=/lfs/1/deepak/data/imagenet/ --eval_subset=validation --num_batches=100 --batch_size=500"

Other example command lines are available in the scripts/ directory (for example, training and evaluating ResNet152 on 4 GPUs).

Make sure to first follow the instructions in the TensorFlow models repository to get necessary data, etc.

About

Benchmark code

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%