This repo contains semantic segmentation models for Stanford Drone Dataset and for Semantic Drone Dataset
Detailed solution including visualization results and links to model weights you can find in solution.md.
Stanford Drone Dataset https://cvgl.stanford.edu/projects/uav_data/
Semantic Drone Dataset https://www.tugraz.at/index.php?id=22387
- download dataset;
- unpack into
data/stanford_drone
folder, it should containannotations/
andvideos/
subfolders; - run
python unsupervised_methods/vanilla_background.py
to prepare segmentation masks based on background subtraction; - each video folder now should contain
box_masks/
,frames/
,seg_masks/
subfolders andboxes.csv
; - run
python supervised_models/train_stanford.py
for training; - run
tensorboard --logdir=lightning_logs/version_0
to see logs; - run
python supervised_models/inference.py
for inference on validation set. Don't forget to point appropriate checkpoint inside inference.py;
- download dataset (https://www.kaggle.com/bulentsiyah/semantic-drone-dataset);
- unpack into
data/SDD
folder, it should containRGB_color_image_masks/
,semantic_drone_dataset/
subfolders andclass_dict_seg.csv
; - run
python supervised_models/sdd_dataset.py
to prepare 1-channel (not colored) segmentation masks, categories encoded as int labels:{0:"default", 1:"car", 2:"person", 3:"bicycle"}
; data/SDD
now should containvalue_masks
subfolder with value masks for each dataset image;- run
python supervised_models/train_sdd.py
for training; - run
tensorboard --logdir=lightning_logs/version_0
to see logs; - run
python supervised_models/inference.py
for inference on validation set. Don't forget to point appropriate checkpoint and model inside inference.py;