This Python3 library provides an easy interface to the bitcoin data structures and protocol. The approach is low-level and "ground up", with a focus on providing tools to manipulate the internals of how Bitcoin Cash works.
sudo apt-get install libssl-dev
The RPC interface, bitcoincash.rpc
, is designed to work with Bitcoin Unlimited v1.7.0.
Older versions are out of consensus.
Everything consensus critical is found in the modules under bitcoincash.core. This rule is followed pretty strictly, for instance chain parameters are split into consensus critical and non-consensus-critical.
bitcoincash.core - Basic core definitions, datastructures, and
(context-independent) validation
bitcoincash.core.key - ECC pubkeys
bitcoincash.core.schnorr - Schnorr signing/verification
bitcoincash.core.script - Scripts and opcodes
bitcoincash.core.scripteval - Script evaluation/verification
bitcoincash.core.serialize - Serialization
Non-consensus critical modules include the following:
bitcoincash - Chain selection
bitcoincash.base58 - Base58 encoding
bitcoincash.bloom - Bloom filters (incomplete)
bitcoincash.cashaddr - Cashaddr encoding
bitcoincash.electrum - Bitcoin Electrum RPC interface support
bitcoincash.net - Network communication (in flux)
bitcoincash.messages - Network messages (in flux)
bitcoincash.rpc - Bitcoin Satoshi-client RPC interface support
bitcoincash.wallet - Wallet-related code, currently Bitcoin address and
private key support
Effort has been made to follow the Satoshi source relatively closely, for instance Python code and classes that duplicate the functionality of corresponding Satoshi C++ code uses the same naming conventions: CTransaction, CBlockHeader, nValue etc. Otherwise Python naming conventions are followed.
Like the Bitcoin Unlimited codebase CTransaction is immutable and CMutableTransaction is mutable; unlike the Bitcoin Core codebase this distinction also applies to COutPoint, CTxIn, CTxOut, and CBlock.
Rather confusingly Bitcoin Unlimited shows transaction and block hashes as little-endian hex rather than the big-endian the rest of the world uses for SHA256. python-bitcoincashlib provides the convenience functions x() and lx() in bitcoin.core to convert from big-endian and little-endian hex to raw bytes to accomodate this. In addition see b2x() and b2lx() for conversion from bytes to big/little-endian hex.
While not always good style, it's often convenient for quick scripts if
import *
can be used. To support that all the modules have __all__
defined
appropriately.
See examples/
directory. For instance this example creates a transaction
spending a pay-to-script-hash transaction output:
$ PYTHONPATH=. examples/spend-pay-to-script-hash-txout.py
<hex-encoded transaction>
Do the following:
import bitcoincash
bitcoincash.SelectParams(NAME)
Where NAME is one of 'testnet', 'mainnet', or 'regtest'. The chain currently selected is a global variable that changes behavior everywhere, just like in the Satoshi codebase.
Under bitcoincash/tests using test data from Bitcoin Unlimited. To run them:
python3 -m unittest discover
To also enable electrum tests (these connect to a remote server), set the
ELECTRUM_TESTS
env variable
ELECTRUM_TESTS=1 python3 -m unittest discover
Alternately, if Tox (see https://tox.readthedocs.org/) is available on your system, you can run unit tests for multiple Python versions:
./runtests.sh
HTML coverage reports can then be found in the htmlcov/ subdirectory.
Sphinx documentation is in the "doc" subdirectory. Run "make help" from there to see how to build. You will need the Python "sphinx" package installed.
Currently this is just API documentation generated from the code and docstrings. Higher level written docs would be useful, perhaps starting with much of this README. Pages are written in reStructuredText and linked from index.rst.