Example project on how to modify your code to run on CyberGIS Compute.
Include a manifest.json
file under your project's root path. It defines how your projects would run on HPC
.
In the file, you should include some basic information like:
name: string
: name of the projectdescription: string
: a brief descriptioncontainer: string
: the container environment to run your code on- available containers:
python
- for custom container environment, contact xxx@illinois.edu
- available containers:
supported_hpc?: Array<string>
: supported computing resources, see doc. Default['keeling_community']
default_hpc?: string
: default computing resources. Default to first defined insupported_hpc
Then, you should define the execution steps for your project:
pre_processing_stage?: string
: an optional bash command that runs when the project begins. Single threaded, non-MPI.execution_stage: string
: the required bash command that runs in multi-threaded MPI and executes the project.- if you'd like to run sbatch command, use
execution_stage_in_raw_sbatch: Array<string>
- if you'd like to run sbatch command, use
post_processing_stage?: string
: an optional bash command that runs after execution finishes. Single threaded, non-MPI.
After that, define how you'd like your users to interact with your project by passing in parameters. Define your parameters in param_rules?: {[keys: string]: any}
like:
{
// ...
"param_rules": {
// define a string input
"input_a": {
"type": "integer",
"require": true,
"max": 100,
"min": 0,
"default_value": 50,
"step": 10
},
// define a select options input
"input_b": {
"type": "string_option",
"options": ["foo", "bar"],
"default_value": "foo"
}
}
}
Finally, define the HPC
resources you'd like to use. Supported types are:
{
// ...
"slurm_input_rules": {
"num_of_node": integerRule, // number of nodes, ie. SBATCH nodes
"num_of_task": integerRule, // number of tasks, ie. SBATCH ntasks
"time": integerRule, // runtime limit, ie. SBATCH time
"cpu_per_task": integerRule, // number of CPU per task, ie. SBATCH cpus-per-task
"memory_per_cpu": integerRule, // amount of memory per CPU, ie. SBATCH mem-per-cpu
"memory_per_gpu": integerRule, // amount of memory per GPU, ie. SBATCH mem-per-gpu
"memory": integerRule, // total memory allocated, ie. SBATCH mem
"gpus": integerRule, // total GPU allocated, ie. SBATCH gpus
"gpus_per_node": integerRule, // number of GPU per node, ie. SBATCH gpus-per-node
"gpus_per_socket": integerRule, // number of GPU per socket, ie. SBATCH gpus-per-socket
"gpus_per_task": integerRule, // number of GPU per task, ie. SBATCH gpus-per-task
"partition": stringOptionRule // partition name on HPC, ie. SBATCH partition
}
}
integerRule
type configs are defined as such:
{
"slurm_input_rules": {
// regular integer values
"num_of_task": {
"max": 6,
"min": 1,
"default_value": 4,
"step": 1
},
// united specific configs like
// 'GB' | 'MB' | 'Minutes' | 'Hours' | 'Days'
"time": {
"max": 50,
"min": 10,
"default_value": 20,
"step": 1,
"unit": "Minutes"
}
}
}
stringOptionRule
can be defined as such:
{
"slurm_input_rules": {
// ...
"partition": {
"type": "string_option",
"options": ["option_a", "option_b", "option_c"],
"default_value": "option_a"
}
}
}
CyberGIS Compute creates a job.json
file that includes:
{
"job_id": string,
"user_id": string,
"hpc": string,
// user parameters input
"param": {
"param_a": 1,
"param_b": "value"
},
"executable_folder": string, // path to the executable code
"data_folder": string, // path to the uploaded data
"result_folder": string // path to the download data folder
}
If your application does not support reading JSON file, you can access it through system environment variables
import os
os.environ['job_id']
os.environ['param_param_a'] # access param['param_a']
- Because CyberGIS Compute downloads the
result_folder
using globus, we recommend putting downloadable data into theresult_folder
. You can get the full path injob.json
. - If you want to execute multiple command (ex. setup something), you can create a bash script and just run
bash some_script.sh
in yourexecution_stage
.