Skip to content

Can we make a usable XSPEC model module in Python **experimental**

License

Notifications You must be signed in to change notification settings

cxcsds/xspec-models-cxc

Repository files navigation

xspec-models-cxc

Exploring ways to create a Python module that can let users use the XSPEC model library with minimal effort. The idea would then be that packages like Sherpa and 3ML could build on this package.

Well, that's the plan. I need people to actually try it out to see if it is useful and worth moving forward.

The home page for this module is xspec-models-cxc.

LICENSE

This is released under the GNU GPL version 3 as this is built on code developed for Sherpa and the CIAO contrib packages.

How to build

You need to have the XSPEC model library installed. The easiest way to do this is to actually build and install XSPEC directly, but it should also work if you build just the XSPEC models library with the --enable-xs-models-only flag. An alternative is to use the CXC-provided xspec-modelsonly conda package that comes as part of the CXC CIAO distribution.

Supported versions of XSPEC: 12.12.1 to 12.14.1.

Newer versions may work, but there's no guarantee since HEASOFT does change the build from time to time. Support for the older versions is not guaranteed either!

You need to have the HEADAS environment variable set up and probably have also sourced the $HEADAS/headas-init.sh or $HEADAS/headas-init.csh script. I also strongly suggest using a new venv or conda environment!

The code will guess whether to use g++ or clang++. This choice will be over-ridden by setting the CXX environment variable (useful for cases where XSPEC was built with clang but you also have gcc installed, as the install defaults to g++ in this case).

Then you can either

% pip install xspec_models_cxc[test] --verbose

(the --verbose is in case there's an error, as the default information you get from pip on a failue is generally less-than useful), or you can try

% git clone https://github.com/cxcsds/xspec-models-cxc
% cd xspec-models-cxc
% pip install .[test] --verbose

The build requires both pybind11 and parse-xspec but they will be installed automatically if needed. Neither is required to use the compiled module.

How to test

Testing is done with (the actual output depends on the version of XSPEC installed and the version of this module):

% pytest
============================= test session starts ==============================
platform linux -- Python 3.12.6, pytest-8.3.3, pluggy-1.5.0
rootdir: /home/dburke/sherpa/xspec-models-cxc
configfile: pyproject.toml
collected 788 items

src/xspec_models_cxc/tests/test_basic.py ............................... [  3%]
........................................................................ [ 13%]
..................................s..................................... [ 22%]
......s................................................................. [ 31%]
........................................................................ [ 40%]
................s...........................................s........... [ 49%]
........................................................................ [ 58%]
........................................................................ [ 67%]
.....................................ss....s..                           [ 73%]
src/xspec_models_cxc/tests/test_realarray.py ........................... [ 77%]
........................................................................ [ 86%]
........................................................................ [ 95%]
....................................                                     [100%]

================== 781 passed, 7 skipped in 144.97s (0:02:24) ==================
 delta   17.767712895533830
 Ldisc   1.3800000596009081E+046 erg s^-1
 RBLR   2506.2608817039027      Rg   3.7148351461236269E+017 cm
 RIR   62656.522903742269      Rg   9.2870879929498337E+018 cm
 mdot>=0.01, so jet = SSC + EC
 gcool   7.2043275554242925
 log Pr   45.3022881     log Pb   45.1834221
 log Pe   44.5943985     log Pp   46.9754486
 log Pj   46.9931221
 idre: initializing data tables, please wait...
       Ref.: Dovciak M., Karas V. & Yaqoob T.
             ApJS July 2004, Volume 153, Issue 1, pp. 205-221
       ------------------------------------------------------
        ...initializing finished
 -------setup for qsosed------
 Gamma_warm=   2.5000000000000000      kTe_warm=  0.20000000000000001
 Gamma_hard=internal calculation  kTe_hot=   100.00000000000000
 albedo=  0.29999999999999999
 Rwarm/Rhot=   2.0000000000000000
 Htmax=   100.00000000000000

 ------hot compton-----
 Gamma_hot=   1.9943788473581052      Rhot=   14.262535224556565
 T(Rhot)nt=   115584.83219658821      Tseed=   216069.57323613123
 Ldis,hot/Ledd=   2.0029989017115401E-002 Lhot/Ledd=   2.4198583118457476E-002

 ------warm compton-----
 T(Rw)=   80093.592123168855      Rwarm=   28.525070449113130

 ------Rout-----
 rout(rsg)=   1288.8911460759962
 tout=   5592.6110556431468
 -----------
 delta   17.767712895533830
 Ldisc   1.3800000596009081E+046 erg s^-1
 RBLR   2506.2608817039027      Rg   3.7148351461236269E+017 cm
 RIR   62656.522903742269      Rg   9.2870879929498337E+018 cm
 mdot>=0.01, so jet = SSC + EC
 gcool   7.2043275554242925
 log Pr   45.3022881     log Pb   45.1834221
 log Pe   44.5943985     log Pp   46.9754486
 log Pj   46.9931221
 -------setup for qsosed------
 Gamma_warm=   2.5000000000000000      kTe_warm=  0.20000000000000001
 Gamma_hard=internal calculation  kTe_hot=   100.00000000000000
 albedo=  0.29999999999999999
 Rwarm/Rhot=   2.0000000000000000
 Htmax=   100.00000000000000

 ------hot compton-----
 Gamma_hot=   1.9943788473581052      Rhot=   14.262535224556565
 T(Rhot)nt=   115584.83219658821      Tseed=   216069.57323613123
 Ldis,hot/Ledd=   2.0029989017115401E-002 Lhot/Ledd=   2.4198583118457476E-002

 ------warm compton-----
 T(Rw)=   80093.592123168855      Rwarm=   28.525070449113130

 ------Rout-----
 rout(rsg)=   1288.8911460759962
 tout=   5592.6110556431468
 -----------

 ISMabs: ISM absorption model Version1.2
 Gatuzz, Garcia, Kallman, Mendoza, & Gorczyca (2014)
 Note: Default column densities are given
 according to Grevesse, N. & Sauval (1998)
 assuming N_H = 1.E21 cm^-2

 idre: initializing data tables, please wait...
       Ref.: Dovciak M., Karas V. & Yaqoob T.
             ApJS July 2004, Volume 153, Issue 1, pp. 205-221
       ------------------------------------------------------
        ...initializing finished

Notes

The $HEADAS/../spectral/manager/model.dat file is used to determine what models are available, and their parameters.

XSPEC 12.14.1

Number of models: 293

Type Total Supported
additive 203 203
multiplicative 67 67
convolution 23 23
acn 1 0
Type Total Supported
C++ 197 196
C 8 8
FORTRAN sp 86 86
FORTRAN dp 3 3

Number skipped: 1

The pileup model is unsupported (as it uses the "acn" model type, as are any of the mixing models, which we do not even try to support).

How do we evaluate a model

The interface mirrors that used by the XSPEC local model interface, but tweaked to support Python and NumPy.

As shown below, each model is represented by a function in the xspec_models_cxc module which takes an energies and pars argument, and returns a NumPy array (there are some tweaks, such as the optional spectrum argument for those models using XFLT data, convolution models needing more arguments, and different ways to evaluate the model). More information is provided in the Evaluating Models section below.

Quick run through

Here's a quick run through, which is available as scripts/example.py. The Examples section below has more details.

import numpy as np

from matplotlib import pyplot as plt

import xspec_models_cxc as x

x.chatter(0)  # Hide the screen messages

vxspec = x.get_version()
print(f"XSPEC version:  {vxspec}")
print(f"Module version: {x.__version__}")

def add_version():
    plt.text(0.98, 0.98, f"XSPEC {vxspec}",
             transform=plt.gcf().transFigure,
             verticalalignment="top",
             horizontalalignment="right")

    plt.text(0.02, 0.98, f"Module {x.__version__}",
             transform=plt.gcf().transFigure,
             verticalalignment="top",
             horizontalalignment="left")


egrid = np.arange(0.1, 20, 0.01)
emid = (egrid[:-1] + egrid[1:]) / 2

for kT in [0.1, 0.3, 0.5, 1, 3, 5, 10]:
    y = x.apec(energies=egrid, pars=[kT, 1, 0])
    plt.plot(emid, y, label=f'kT={kT}', alpha=0.6)

plt.xscale('log')
plt.yscale('log')

plt.legend()

plt.xlabel('Energy (keV)')
plt.ylabel('Photon/cm$^2$/s')
plt.title('APEC model: Abundance=1 Redshift=0')
add_version()

plt.savefig('example-additive.png')

plt.clf()

for nH in [0.01, 0.05, 0.1, 0.5, 1]:
    y = x.phabs(energies=egrid, pars=[nH])
    plt.plot(emid, y, label=f'nH={nH}', alpha=0.6)

plt.xscale('log')
plt.yscale('log')

plt.legend()

plt.xlabel('Energy (keV)')
plt.ylabel('Relative')
plt.title('PHABS model')
add_version()

plt.savefig('example-multiplicative.png')

plt.clf()

model = x.phabs(energies=egrid, pars=[0.05]) * x.apec(energies=egrid, pars=[0.5, 1, 0])
plt.plot(emid, model, label='Unconvolved', c='k', alpha=0.8)

for pars in [[0.1, 0], [0.2, -1], [0.2, 1]]:
    # the model argument gets over-written by gsmooth, hence the copy
    y = x.gsmooth(energies=egrid, pars=pars, model=model.copy())
    plt.plot(emid, y, label=rf'$\sigma$={pars[0]} index={pars[1]}', alpha=0.8)

plt.xscale('log')
plt.yscale('log')

plt.legend()

plt.xlabel('Energy (keV)')
plt.ylabel('Photon/cm$^2$/s')
plt.title('GSMOOTH(PHABS * APEC)')
add_version()

plt.savefig('example-convolution.png')

The screen output is just

XSPEC version:  12.14.1d
Module version: 0.1.0

and the plots are

Additive model

additive model

Multiplicative model

multipicative model

Convolution model

convolution model

What models are supported?

The info() and list_models() routines give information on the supported models.

Listing models

>>> import xspec_models_cxc as x
>>> x.list_models()
['SSS_ice', 'TBabs', 'TBfeo', 'TBgas', 'TBgrain', 'TBpcf', ...
... 'zvphabs', 'zwabs', 'zwndabs', 'zxipab', 'zxipcf']
>>> x.list_models(modeltype=x.ModelType.Con)
['cflux', 'clumin', 'cpflux', 'gsmooth', 'ireflect', 'kdblur', 'kdblur2', 'kerrconv', 'kyconv', 'lsmooth', 'partcov', 'rdblur', 'reflect', 'rfxconv', 'rgsxsrc', 'simpl', 'thcomp', 'vashift', 'vmshift', 'xilconv', 'zashift', 'zmshift']
>>> x.list_models(modeltype=x.ModelType.Con, language=x.LanguageStyle.F77Style4)
['kyconv', 'rgsxsrc', 'thcomp']
>>> x.list_models(language=x.LanguageStyle.F77Style8)
['ismabs', 'ismdust', 'olivineabs']

Querying a model

>>> x.info('apec')
XSPECModel(modeltype=<ModelType.Add: 1>, name='apec', funcname='apec', language=<LanguageStyle.CppStyle8: 1>, elo=0.0, ehi=1e+20, parameters=[XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT', default=1.0, units='keV', frozen=False, softmin=0.008, softmax=64.0, hardmin=0.008, hardmax=64.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='Abundanc', default=1.0, units=None, frozen=True, softmin=0.0, softmax=5.0, hardmin=0.0, hardmax=5.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='Redshift', default=0.0, units=None, frozen=True, softmin=-0.999, softmax=10.0, hardmin=-0.999, hardmax=10.0, delta=0.01)], use_errors=False, can_cache=True)
>>> x.info('TBabs')
XSPECModel(modeltype=<ModelType.Mul: 2>, name='TBabs', funcname='tbabs', language=<LanguageStyle.CppStyle8: 1>, elo=0.03, ehi=1e+20, parameters=[XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH', default=1.0, units='10^22', frozen=False, softmin=0.0, softmax=100000.0, hardmin=0.0, hardmax=1000000.0, delta=0.001)], use_errors=False, can_cache=True)
>>> x.info('zxipab')
XSPECModel(modeltype=<ModelType.Mul: 2>, name='zxipab', funcname='zxipab', language=<LanguageStyle.F77Style4: 3>, elo=0.01, ehi=1e+20, parameters=[XSPECParameter(paramtype=<ParamType.Default: 1>, name='nHmin', default=0.01, units='10^22', frozen=False, softmin=1e-07, softmax=1000.0, hardmin=1e-07, hardmax=1000000.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nHmax', default=10.0, units='10^22', frozen=False, softmin=1e-07, softmax=1000.0, hardmin=1e-07, hardmax=1000000.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='beta', default=0.0, units=None, frozen=False, softmin=-10.0, softmax=10.0, hardmin=-10.0, hardmax=10.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='log_xi', default=3.0, units=None, frozen=False, softmin=-3.0, softmax=6.0, hardmin=-3.0, hardmax=6.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='redshift', default=0.0, units=None, frozen=True, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.01)], use_errors=False, can_cache=True)
>>> x.info('smaug')
XSPECModel(modeltype=<ModelType.Add: 1>, name='smaug', funcname='xsmaug', language=<LanguageStyle.CStyle8: 2>, elo=0.0, ehi=1e+20, parameters=[XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_cc', default=1.0, units='keV', frozen=False, softmin=0.1, softmax=10.0, hardmin=0.08, hardmax=100.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_dt',
default=1.0, units='keV', frozen=False, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=100.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_ix', default=0.0, units=None, frozen=True, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_ir', default=0.1, units='Mpc', frozen=True, softmin=0.0001, softmax=1.0, hardmin=0.0001, hardmax=1.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_cx', default=0.5, units=None, frozen=False, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_cr', default=0.1, units='Mpc', frozen=False, softmin=0.0001, softmax=10.0, hardmin=0.0001, hardmax=20.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_tx', default=0.0, units=None, frozen=True, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='kT_tr', default=0.5, units='Mpc', frozen=True, softmin=0.0001, softmax=1.0, hardmin=0.0001, hardmax=3.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH_cc', default=1.0, units='cm**-3', frozen=True, softmin=1e-06, softmax=3.0, hardmin=1e-06, hardmax=3.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH_ff', default=1.0, units=None, frozen=True, softmin=0.0, softmax=1.0, hardmin=0.0, hardmax=1.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH_cx', default=0.5, units=None, frozen=False, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH_cr', default=0.1, units='Mpc', frozen=False, softmin=0.0001, softmax=1.0, hardmin=0.0001, hardmax=2.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH_gx', default=0.0, units=None, frozen=True, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='nH_gr', default=0.002, units='Mpc', frozen=True, softmin=0.0001, softmax=10.0, hardmin=0.0001,
hardmax=20.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='Ab_cc', default=1.0, units='solar', frozen=True, softmin=0.0, softmax=3.0, hardmin=0.0, hardmax=5.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='Ab_xx', default=0.0, units=None, frozen=True, softmin=0.0, softmax=10.0, hardmin=0.0, hardmax=10.0, delta=0.001), XSPECParameter(paramtype=<ParamType.Default: 1>, name='Ab_rr', default=0.1, units='Mpc', frozen=True, softmin=0.0001, softmax=1.0, hardmin=0.0001, hardmax=1.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='redshift', default=0.01, units=None, frozen=True, softmin=0.0001, softmax=10.0, hardmin=0.0001, hardmax=10.0, delta=1.0), XSPECParameter(paramtype=<ParamType.Default: 1>, name='meshpts', default=10.0, units=None, frozen=True, softmin=1.0, softmax=10000.0, hardmin=1.0, hardmax=10000.0, delta=1.0), XSPECParameter(paramtype=<ParamType.Default: 1>, name='rcutoff', default=2.0, units='Mpc', frozen=True, softmin=1.0, softmax=3.0, hardmin=1.0, hardmax=3.0, delta=0.01), XSPECParameter(paramtype=<ParamType.Default: 1>, name='mode', default=1.0, units=None, frozen=True, softmin=0.0, softmax=2.0, hardmin=0.0, hardmax=2.0, delta=1.0), XSPECParameter(paramtype=<ParamType.Default: 1>, name='itype', default=2.0, units=None, frozen=True, softmin=1.0, softmax=4.0, hardmin=1.0, hardmax=4.0, delta=1.0)], use_errors=False, can_cache=False)

What are the parameters for a model?

>>> m = x.info('smaug')
>>> for p in m.parameters:
...     print(f' {p.name:10s} = {p.default:5g}  units={p.units}  frozen={p.frozen}  range: {p.hardmin}-{p.hardmax}')
...
 kT_cc      =     1  units=keV  frozen=False  range: 0.08-100.0
 kT_dt      =     1  units=keV  frozen=False  range: 0.0-100.0
 kT_ix      =     0  units=None  frozen=True  range: 0.0-10.0
 kT_ir      =   0.1  units=Mpc  frozen=True  range: 0.0001-1.0
 kT_cx      =   0.5  units=None  frozen=False  range: 0.0-10.0
 kT_cr      =   0.1  units=Mpc  frozen=False  range: 0.0001-20.0
 kT_tx      =     0  units=None  frozen=True  range: 0.0-10.0
 kT_tr      =   0.5  units=Mpc  frozen=True  range: 0.0001-3.0
 nH_cc      =     1  units=cm**-3  frozen=True  range: 1e-06-3.0
 nH_ff      =     1  units=None  frozen=True  range: 0.0-1.0
 nH_cx      =   0.5  units=None  frozen=False  range: 0.0-10.0
 nH_cr      =   0.1  units=Mpc  frozen=False  range: 0.0001-2.0
 nH_gx      =     0  units=None  frozen=True  range: 0.0-10.0
 nH_gr      = 0.002  units=Mpc  frozen=True  range: 0.0001-20.0
 Ab_cc      =     1  units=solar  frozen=True  range: 0.0-5.0
 Ab_xx      =     0  units=None  frozen=True  range: 0.0-10.0
 Ab_rr      =   0.1  units=Mpc  frozen=True  range: 0.0001-1.0
 redshift   =  0.01  units=None  frozen=True  range: 0.0001-10.0
 meshpts    =    10  units=None  frozen=True  range: 1.0-10000.0
 rcutoff    =     2  units=Mpc  frozen=True  range: 1.0-3.0
 mode       =     1  units=None  frozen=True  range: 0.0-2.0
 itype      =     2  units=None  frozen=True  range: 1.0-4.0

Table models

New in version 0.0.20 is support for XSPEC table models. This support is rather limited as it only allows you toe valuate the table model and does not provide any access to the metadata in the model (which determines whether it is an atable or mtable model [unfortunately there is no flag to say it's an etable model], whether to add a redshift parameter, what the parameters are, what the default and parameter ranges are, ...).

Models are evaluated with the tableModel function.

Unfortunately, because of the way that XSPEC provides access to the table models, it will not work with XSPEC 12.12.0 (or, rather, it is not clear how best to support it in this version whilst also supporting XSPEC 12.12.1, so I've dropped the 12.12.0 support for now).

Examples

The XSPEC model library is automatically initalized when the first call is made, not when the module is loaded. The init function provided in version 0.0.5 and earlier is no-longer provided.

>>> import xspec_models_cxc as x
>>> x.__version__
'0.0.29'
>>> help(x)
Help on package xspec_models_cxc:

NAME
    xspec_models_cxc - Experiment with XSPEC models.

DESCRIPTION
    The XSPEC model library is automatically initialized when the first
    call is made, and not when the module is loaded.

    There are three types of symbols in this package:

    1. model functions, such as `apec` and `TBabs`, and `tableModel` for
       table models.
    2. routines that set or get values such as the abundance
       table (`abundance`), cross-section table (`cross_sections`),
       cosmology (`cosmology`), and the chatter level (`chatter`).
    3. routines about the models: `info` and `list_models`.

    Examples
    --------

    What version of XSPEC is being used?

    >>> import xspec_models_cxc as x
    >>> x.get_version()
    '12.14.1'

    What models are supported (the actual list depends on the
    version of XSPEC the code was compiled against)?

    >>> import xspec_models_cxc as x
    >>> x.list_models()
    ['SSS_ice', 'TBabs', 'TBfeo', ..., 'zwndabs', 'zxipab', 'zxipcf']

    Evaluate the multiplication of phabs and apec models, with their
    default parameter ranges, on the grid from 0.1 to 10 keV with a bin
    size of 1 eV. Note that the return value has one less element than the
    grid, because it is evaluated over the range egrid[0]-egrid[1],
    egrid[1]-egrid[2], ..., egrid[-2]-egrid[-1] - which for this case is
    0.100-0.101, 0.101-0.102, ..., 9.998-9.999 keV.

    >>> import numpy as np
    >>> from matplotlib import pyplot as plt
    >>> import xspec_models_cxc as x
    >>> egrid = np.arange(0.1, 10, 0.001)
    >>> apec = x.info('apec')
    >>> phabs = x.info('phabs')
    >>> pars_apec = [p.default for p in apec.parameters]
    >>> pars_phabs = [p.default for p in phabs.parameters]
    >>> yapec = x.apec(energies=egrid, pars=pars_apec)
    >>> yphabs = x.phabs(energies=egrid, pars=pars_phabs)
    >>> ymodel = yphabs * yapec
    >>> emid = (egrid[:-1] + egrid[1:]) / 2
    >>> plt.plot(emid, ymodel, label='phabs * apec')
    >>> plt.yscale('log')
    >>> plt.ylim(1e-9, 0.01)
    >>> plt.legend()
    >>> plt.xlabel('Energy (keV)')
    >>> plt.ylabel('Photon/cm$^2$/s')

    We can include a convolution component - in this case the kdblur model
    - even if it is physically unrealistic. The two differences here is
    that the model requires the data to be convolved to be sent in as the
    `model` argument, and that this array is changed by the routine (in
    the same way that the out parameter works for NumPy ufunc
    routines). The convolution models also return the value so we could
    have said

        out = x.kdblur(ebergies=.., pars=.., model=ymodel.copy())

    which would keep the original model values (there is actualy a subtly
    in that the `model` argument must be sent the correct datatype for the
    convolution model - so either `np.float64` or `np.float32` - otherwise
    it will not be changed).

    >>> kdblur = x.info('kdblur')
    >>> pars_kdblur = [p.default for p in kdblur.parameters]
    >>> x.kdblur(energies=egrid, pars=pars_kdblur, model=ymodel)
    >>> plt.plot(emid, ymodel, alpha=0.8, label='Convolved')
    >>> plt.legend()

    XSPEC table models [TableModel]_ are fun to work with, as you

    1. need to read in the file to find out information on the model -
       such as whether it's atable or mtable (but unfortunately there is
       no header keyword to determine if it is an etable) - and the
       parameter names, values, and ranges.

    2. use the file name when evaluating the model along with some of
       this metadata.

    At the moment this module only supports the second part - calling the
    models - and it is left to the user to find the other information out.

    In this example the ``RCS.mod`` table model, which has three
    parameters, does not add a redshift parameter, and is an "atable"
    model (i.e. additive):

        % dmlist "RCS.mod[cols name, initial]" data,clean
        #  NAME           INITIAL
         tau                             1.0
         beta               0.10000000149012
         T                  0.10000000149012
        % dmkeypar xspec-tablemodel-RCS.mod"[primary]" redshift echo+
        0
        % dmkeypar "xspec-tablemodel-RCS.mod[primary]" addmodel echo+
        1

    This can then be used with `tableModel` in a similar manner to the
    other models, apart from requiring `table` and `table_type` arguments:

    >>> infile = 'RCS.mod'
    >>> pars = [1, 0.1, 0.1]
    >>> egrid = np.arange(0.1, 10, 0.01)
    >>> y = x.tableModel(table=infile, table_type="add", energies=egrid, pars=pars)

    Note that it is very easy to make the table model code crash the
    system, such as by sending in not enough parameters or setting a
    parameter outside its hard limits:

    >>> x.tableModel(infile, "add", pars=[1, 2], energies=egrid)
    Segmentation fault (core dumped)

    References
    ----------

    .. [TableModel] https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/general/ogip_92_009/ogip_92_009.html

PACKAGE CONTENTS
    _compiled

CLASSES
    builtins.object
        XSPECModel
        XSPECParameter
    enum.Enum(builtins.object)
        LanguageStyle
        ModelType
        ParamType

...

FUNCTIONS
    SSS_ice(...) method of builtins.PyCapsule instance
        SSS_ice(*args, **kwargs)
        Overloaded function.

        1. SSS_ice(pars: numpy.ndarray[numpy.float32], energies: numpy.ndarray[numpy.float32], spectrum: int = 1) -> numpy.ndarray[numpy.float32]

        The XSPEC multiplicative SSS_ice model (1 parameter).

        2. SSS_ice(pars: numpy.ndarray[numpy.float32], energies: numpy.ndarray[numpy.float32], out: numpy.ndarray[numpy.float32], spectrum: int = 1) -> numpy.ndarray[
numpy.float32]

        The XSPEC multiplicative SSS_ice model (1 parameter); inplace.

    TBabs(...) method of builtins.PyCapsule instance
        TBabs(*args, **kwargs)
        Overloaded function.

        1. TBabs(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

        The XSPEC multiplicative TBabs model (1 parameter).

        2. TBabs(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], out: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

        The XSPEC multiplicative TBabs model (1 parameter); inplace.

    TBabs_(...) method of builtins.PyCapsule instance
        TBabs_(pars: xspec_models_cxc._compiled.RealArray, energies: xspec_models_cxc._compiled.RealArray, out: xspec_models_cxc._compiled.RealArray, spectrum: int = 1, initStr: str = '') -> xspec_models_cxc._compiled.RealArray

        The XSPEC multiplicative TBabs model (1 parameter); RealArray, inplace.

    TBfeo(...) method of builtins.PyCapsule instance
...

DATA
    List = typing.List
        A generic version of list.

    Optional = typing.Optional
        Optional[X] is equivalent to Union[X, None].

    Sequence = typing.Sequence
        A generic version of collections.abc.Sequence.

    numberElements = 30

VERSION
    0.0.29

FILE
    /some/long/path/to/xspec-models-cxc/xspec_models_cxc.__init__.py

Note that you can see the difference between a FORTRAN model such as SSS_ice, which deals with single-precision floats, and C/C++ models such as TBabs, which deal with double-precision floats. See the EVALUATING MODELS section below.

UTILITY ROUTINES

With this we can do a few things:

What version of XSPEC are we using?

>>> help(x.get_version)
Help on built-in function get_version in module xspec_models_cxc:

get_version(...) method of builtins.PyCapsule instance
    get_version() -> str

    The version of the XSPEC model library

>>> x.get_version()
'12.14.1'

Playing with the chatter setting

>>> help(x.chatter)
Help on built-in function chatter in module xspec_models_cxc:

chatter(...) method of builtins.PyCapsule instance
    chatter(*args, **kwargs)
    Overloaded function.

    1. chatter() -> int

    Get the XSPEC chatter level.

    2. chatter(chatter: int) -> None

    Set the XSPEC chatter level.

>>> x.chatter()
10
>>> x.chatter(0)
>>> x.chatter()
0
>>> x.chatter(10)

How about abundances tables?

>>> help(x.abundance)
Help on built-in function abundance in module xspec_models_cxc:

abundance(...) method of builtins.PyCapsule instance
    abundance(*args, **kwargs)
    Overloaded function.

    1. abundance() -> str

    Get the abundance-table setting.

    2. abundance(table: str) -> None

    Set the abundance-table setting.

>>> x.abundance()
'angr'
>>> x.abundance('lpgp')
 Solar Abundance Vector set to lpgp:  Lodders K., Palme H., Gail H.P., Landolt-Börnstein, New Series, vol VI/4B, pp 560–630 (2009) (Photospheric)
>>> x.abundance()
'lpgp'
>>> x.abundance('angr')
 Solar Abundance Vector set to angr:  Anders E. & Grevesse N. Geochimica et Cosmochimica Acta 53, 197 (1989)

It isn't clever enough to notice if you give it an unsupported abundance name.

What has atomic number 17?

>>> help(x.elementName)
Help on built-in function elementName in module xspec_models_cxc:

elementName(...) method of builtins.PyCapsule instance
    elementName(z: int) -> str

    Return the name of an element given the atomic number.

>>> x.elementName(17)
'Cl'

What is the abundance of an element?

>>> help(x.elementAbundance)
Help on built-in function elementAbundance in module xspec_models_cxc:

elementAbundance(...) method of builtins.PyCapsule instance
    elementAbundance(*args, **kwargs)
    Overloaded function.

    1. elementAbundance(name: str) -> float

    Return the abundance setting for an element given the name.

    2. elementAbundance(z: int) -> float

    Return the abundance setting for an element given the atomic number.

>>> x.elementAbundance('Cl')
3.160000119351025e-07
>>> x.elementAbundance(17)
3.160000119351025e-07

Note that there's limited checking:

>>> >>> x.elementAbundance('Po')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'Po'
>>> x.elementAbundance(256)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: 256
>>> x.elementAbundance(0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: 0
>>> x.elementAbundance(-4)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: elementAbundance(): incompatible function arguments. The following argument types are supported:
    1. (name: str) -> float
    2. (z: int) -> float

Invoked with: -4

EVALUATING MODELS

Additive and multipicative models can either create a new output array on each call - such as

>>> y = x.apec(pars=pars, energies=egrid)

or they can re-use an output array (in a similar manner to the out argument of NumPy routines like np.cumsum):

>>> y = np.zeros(egrid.size - 1)
>>> yout = x.apec(pars=pars, energies=egrid, out=y)
>>> yout is y
True

APEC (additive, C++)

The model.dat record for this model is

apec           3  0.         1.e20           C_apec    add  0
kT      keV     1.    0.008   0.008   64.0      64.0      .01
Abundanc " "    1.    0.      0.      5.        5.        -0.001
Redshift " "    0.   -0.999  -0.999   10.       10.       -0.01

So, if we want to use the default parameters - that is, kT=1, Abundance=1, Redshift=0 - for the energy grid 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5 we can say:

>>> import xspec_models_cxc as x
>>> help(x.apec)
Help on built-in function apec in module xspec_models_cxc:

apec(...) method of builtins.PyCapsule instance
    apec(*args, **kwargs)
    Overloaded function.

    1. apec(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '')
-> numpy.ndarray[numpy.float64]

    The XSPEC additive apec model (3 parameters).

    2. apec(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], out: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

    The XSPEC additive apec model (3 parameters); inplace.

>>> pars = [1, 1, 0]
>>> egrid = [0.1, 0.2, 0.3, 0.4, 0.5]
>>> x.apec(pars, egrid)
Reading APEC data from 3.0.9

array([2.10839183, 0.31196176, 0.22008776, 0.12295151])
>>>

We can see what dufference dropping the abundance to 0 makes:

>>> x.apec([1, 0, 0], egrid)
array([0.47038697, 0.21376409, 0.1247977 , 0.08182932])

Note that the return values have units of photons/cm^2/s as this is an XSPEC additive model.

AGNSLIM (additive, FORTRAN)

The agnslim additive model is a FORTRAN model in 12.12.0:

agnslim         14 0.03       1.e20          agnslim  add  0
mass    solar  1e7     1.0     1.0     1.e10    1.e10     -.1
dist    Mpc    100    0.01    0.01    1.e9    1.e9     -.01
logmdot " "   1.    -10.      -10.       3 3     0.01
astar " " 0. 0. 0. 0.998 0.998 -1
cosi " "  0.5     0.05    0.05      1.   1.  -1
kTe_hot  keV(-pl)  100.0   10 10     300      300        -1
kTe_warm     keV(-sc)  0.2   0.1    0.1    0.5      0.5        1e-2
Gamma_hot    " "  2.4  1.3 1.3     3        3.       0.01
Gamma_warm      "(-disk)"  3.0  2    2     5.        10.       0.01
R_hot "Rg " 10.0 2.0 2.0 500 500 0.01
R_warm "Rg"   20.0  2 2 500 500     0.1
logrout "(-selfg) "   -1.0   -3.0    -3.0       7.0     7.0      -1e-2
rin   ""     -1      -1 -1 100. 100. -1
redshift   " "     0.0    0.      0.      5 5 -1
>>> help(x.agnslim)
Help on built-in function agnslim in module xspec_models_cxc:

agnslim(...) method of builtins.PyCapsule instance
    agnslim(*args, **kwargs)
    Overloaded function.

    1. agnslim(pars: numpy.ndarray[numpy.float32], energies: numpy.ndarray[numpy.float32], spectrum: int = 1) -> numpy.ndarray[numpy.float32]

    The XSPEC additive agnslim model (14 parameters).

    2. agnslim(pars: numpy.ndarray[numpy.float32], energies: numpy.ndarray[numpy.float32], out: numpy.ndarray[numpy.float32],
spectrum: int = 1) -> numpy.ndarray[numpy.float32]

    The XSPEC additive agnslim model (14 parameters); inplace.

>>> pars = [1e7, 100, 1, 0, 0.5, 100, 0.2, 2.4, 3, 10, 20, -1, -1, 0]
>>> egrid = np.arange(0.1, 11, 0.01)
>>> y = x.agnslim(pars, egrid)
>>> y
array([5.6430912e-01, 4.2761257e-01, 3.3259588e-01, ..., 2.6246285e-06,
       2.6130140e-06, 2.6132632e-06], dtype=float32)

BWCYCL (additive, C)

This is a C-style additive model:

bwcycl     12  0.         1.e20           c_beckerwolff    add  0
Radius km      10        5      5       20      20      -1
Mass   Solar   1.4      1       1       3       3       -1
csi     " "     1.5      0.01    0.01    20         20        0.01
delta   " "     1.8      0.01    0.01    20         20        0.01
B       1e12G   4        0.01    0.01   100        100        0.01
Mdot    1e17g/s 1        1e-6   1e-6     1e6        1e6        0.01
Te      keV     5        0.1     0.1    100        100        0.01
r0      m       44        10    10     1000       1000        0.01
D       kpc     5          1     1       20         20        -1
BBnorm  " "     0          0     0       100       100        -1
CYCnorm " "     1          -1     -1       100       100        -1
FFnorm  " "     1          -1     -1       100       100        -1
>>> help(x.bwcycl)
Help on built-in function bwcycl in module xspec_models_cxc:

bwcycl(...) method of builtins.PyCapsule instance
    bwcycl(*args, **kwargs)
    Overloaded function.

    1. bwcycl(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

    The XSPEC additive bwcycl model (12 parameters).

    2. bwcycl(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], out: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

    The XSPEC additive bwcycl model (12 parameters); inplace.

>>> pars = [10, 1.3, 1.5, 1.8, 4, 1, 5, 44, 5, 0, 1, 1]
>>> x.bwcycl(pars, [0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56])
array([0.00030135, 0.00030085, 0.00030123, 0.00030297, 0.00030657,
       0.00031248])

TBABS (multiplicative, C++)

The TBabs is a multiplicative model:

TBabs          1   0.03       1.e20          C_tbabs     mul 0
nH       10^22 1.  0.       0.      1E5       1E6       1E-3

With the default setting we don't expect much flux to get through for the selected energy range (~0.1 - 0.5 keV), but this increases as nH decreases by a magnitude or two:

>>> import numpy
>>> egrid = np.arange(0.1, 0.5, 0.05)
>>> x.abundance('wilm')
 Solar Abundance Vector set to wilm:  Wilms, J., Allen, A. & McCray, R. ApJ 542 914 (2000) (abundances are set to zero for those elements not included in the paper).
>>> help(x.TBabs)
Help on built-in function TBabs in module xspec_models_cxc:

TBabs(...) method of builtins.PyCapsule instance
    TBabs(*args, **kwargs)
    Overloaded function.

    1. TBabs(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

    The XSPEC multiplicative TBabs model (1 parameter).

    2. TBabs(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], out: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

    The XSPEC multiplicative TBabs model (1 parameter); inplace.

>>> x.TBabs([1], egrid)
tbvabs Version 2.3
Cosmic absorption with grains and H2, modified from
Wilms, Allen, & McCray, 2000, ApJ 542, 914-924
Questions: Joern Wilms
joern.wilms@sternwarte.uni-erlangen.de
joern.wilms@fau.de

http://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/

PLEASE NOTICE:
To get the model described by the above paper
you will also have to set the abundances:
   abund wilm

Note that this routine ignores the current cross section setting
as it always HAS to use the Verner cross sections as a baseline.
array([1.28407670e-175, 9.06810629e-062, 9.04157274e-029, 3.26034136e-016,
       2.02047907e-010, 5.09045226e-007, 3.97658583e-005])
>>> x.TBabs([0.1], egrid)
array([3.24234405e-18, 7.86595867e-07, 1.56900525e-03, 2.82700325e-02,
       1.07286588e-01, 2.34787860e-01, 3.63037122e-01])
>>> x.TBabs([0.01], egrid)
array([0.01782731, 0.24523089, 0.52427897, 0.70005576, 0.79993471,
       0.86510249, 0.90363929])

Note that the return values have no units as this is an XSPEC multiplicative model.

MKCFLOW (additive, C++)

The mkcflow additive model has a default of 0 for its redshift, but then warns you about it!

mkcflow        5  0.         1.e20           C_xsmkcf    add  0
lowT    keV     0.1   0.0808  0.0808 79.9      79.9       0.001
highT   keV     4.    0.0808  0.0808 79.9      79.9       0.001
Abundanc " "    1.    0.      0.      5.        5.        0.01
Redshift " "    0.   -0.999  -0.999   10.       10.       -0.01
$switch    1     0       0     1      1       -1
>>> x.mkcflow([0.1, 4, 1, 0, 1], np.arange(0.1, 0.8, 0.1))

 XSVMCF: Require z > 0 for cooling flow models
array([0., 0., 0., 0., 0., 0.])
>>> x.mkcflow([0.1, 4, 1, 0, 1], np.arange(0.1, 0.8, 0.1))

 XSVMCF: Require z > 0 for cooling flow models
array([0., 0., 0., 0., 0., 0.])

unless you set the chatter to 0:

>>> x.chatter(0)
>>> x.mkcflow([0.1, 4, 1, 0, 1], np.arange(0.1, 0.8, 0.1))
array([0., 0., 0., 0., 0., 0.])
>>>

SMAUG (additive, C)

The smaug model is an interesting one you have to set the XFLT keywords before using it. The model is

smaug         22   0.0E+00    1.0E+20        c_xsmaug    add 0  1
kT.cc    keV       1.0E+00    8.0E-02 1.0E-01  1.0E+01  1.0E+02   1.0E-02
kT.dt    keV       1.0E+00    0.0E+00 0.0E+00  1.0E+01  1.0E+02   1.0E-02
kT.ix    " "       0.0E+00    0.0E+00 0.0E+00  1.0E+01  1.0E+01  -1.0E-03
kT.ir    Mpc       1.0E-01    1.0E-04 1.0E-04  1.0E+00  1.0E+00  -1.0E-03
kT.cx    " "       5.0E-01    0.0E+00 0.0E+00  1.0E+01  1.0E+01   1.0E-03
kT.cr    Mpc       1.0E-01    1.0E-04 1.0E-04  1.0E+01  2.0E+01   1.0E-02
kT.tx    " "       0.0E+00    0.0E+00 0.0E+00  1.0E+01  1.0E+01  -1.0E-03
kT.tr    Mpc       5.0E-01    1.0E-04 1.0E-04  1.0E+00  3.0E+00  -1.0E-02
nH.cc    cm**-3    1.0E+00    1.0E-06 1.0E-06  3.0E+00  3.0E+00  -1.0E-02
nH.ff    " "       1.0E-00    0.0E+00 0.0E+00  1.0E+00  1.0E+00  -1.0E-02
nH.cx    " "       5.0E-01    0.0E+00 0.0E+00  1.0E+01  1.0E+01   1.0E-03
nH.cr    Mpc       1.0E-01    1.0E-04 1.0E-04  1.0E+00  2.0E+00   1.0E-02
nH.gx    " "       0.0E+00    0.0E+00 0.0E+00  1.0E+01  1.0E+01  -1.0E-03
nH.gr    Mpc       2.0E-03    1.0E-04 1.0E-04  1.0E+01  2.0E+01  -1.0E-03
Ab.cc    solar     1.0E+00    0.0E+00 0.0E+00  3.0E+00  5.0E+00  -1.0E-02
Ab.xx    " "       0.0E+00    0.0E+00 0.0E+00  1.0E+01  1.0E+01  -1.0E-03
Ab.rr    Mpc       1.0E-01    1.0E-04 1.0E-04  1.0E+00  1.0E+00  -1.0E-02
redshift " "       1.0E-02    1.0E-04 1.0E-04  1.0E+01  1.0E+01  -1.0E+00
meshpts  " "       1.0E+01    1.0E+00 1.0E+00  1.0E+04  1.0E+04  -1.0E+00
rcutoff  Mpc       2.0E+00    1.0E+00 1.0E+00  3.0E+00  3.0E+00  -1.0E-02
mode     " "       1.0E+00    0.0E+00 0.0E+00  2.0E+00  2.0E+00  -1.0E+00
itype    " "       2.0E+00    1.0E+00 1.0E+00  4.0E+00  4.0E+00  -1.0E+00

and when you try to run it the model fails (note that I use the default parameter values apart for redshift, which is set to something cosmologically interesting):

>>> pars = [0.4 if p.name == 'redshift' else p.default for p in x.info('smaug').parameters]
>>> x.smaug(pars, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

***XSPEC Error:  in function XSmaug: cannot find XFLTnnnn keyword for inner annulus for spectrum 1

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: Caught an unknown exception!

We make probably make the error slightly nicer.

Now, we need to set

  • cosmology setup
  • the XFLT "inner", "outer", and "width" keywords

The cosmology is not set up by default:

>>> x.cosmology()
{'h0': 0.0, 'lambda0': 0.0, 'q0': 0.0}

So we change to:

>>> x.cosmology(h0=70, lambda0=0.73, q0=0)

and then set the XFLT keywords (making up these values as it depents on the rcutoff parameter), but the result isn't quite what I was expecting:

>>> x.setXFLT(1, {'inner': 0, 'outer': 0.1, 'width': 360})
>>> x.setXFLT(2, {'inner': 0.1, 'outer': 0.2, 'width': 360})
>>> egrid = np.arange(0.1, 7, 0.01)
>>> y1 = x.smaug(energies=egrid, pars=pars, spectrum=1)
>>> y2 = x.smaug(energies=egrid, pars=pars, spectrum=2)

We can plot this:

>>> emid = (egrid[:-1] + egrid[1:]) / 2
>>> plt.plot(emid, y1, label='Bin 1')
>>> plt.plot(emid, y2, label='Bin 2')
>>> plt.yscale('log')
>>> plt.legend()
>>> plt.xlabel('Energy (keV)')
>>> plt.ylabel('Photons/cm$^2$/s')

to create (although this is a slightly-more-complex version):

smaug model

CFLUX convolution model (convolution, C++)

The cflux convolution model changes the normalization of the input model so it matches 10^lg10Flux for the Emin to Emax range.

cflux        3  0.         1.e20             C_cflux   con 0
Emin    "keV"     0.5   0.0   0.0    1e6      1e6          -0.1
Emax    "keV"    10.0   0.0   0.0    1e6      1e6          -0.1
lg10Flux "cgs"  -12.0  -100.0 -100.0 100.     100.          0.01

Let's try to convolve a powerlaw over the range 0.5 to 10 keV:

>>> help(x.cflux)
Help on built-in function cflux in module xspec_models_cxc:

cflux(...) method of builtins.PyCapsule instance
    cflux(pars: numpy.ndarray[numpy.float64], energies: numpy.ndarray[numpy.float64], model: numpy.ndarray[numpy.float64], spectrum: int = 1, initStr: str = '') -> numpy.ndarray[numpy.float64]

    The XSPEC convolution cflux model (3 parameters); inplace.

>>> egrid = np.arange(0.4, 10.2, 0.1)
>>> pars = [0.5, 10, -12]
>>> y1 = x.powerlaw(pars=[-1.7], energies=egrid)
>>> y2 = x.cflux(pars=pars, energies=egrid, model=y1.copy())

Note that convolution models always over-write the model argument - so if we had used model=y1 rather than model=y1.copy() then y1 would have been changed (which is normally okay, but in this example I wanted to compare the input and output arrays).

There is a subtly to using the model argument: it must have the same date type as the convolution model expects - which can be found by checking help(x.<convolution model>) or x.info(<convolution model)>.language - otherwise it will not be updated. In this case cflux uses float64 so it would work out:

>>> egrid.dtype
dtype('float64')
>>> y1.dtype
dtype('float64')
>>> y2.dtype
dtype('float64')
>>> x.info('cflux').language
<LanguageStyle.CppStyle8: 1>

Now, we need to sum up y2 over the range 0.5 to 10 keV, which thanks to the grid I chose, is all-but the first and last bins:

>>> egrid[:3], egrid[-3:]
(array([0.4, 0.5, 0.6]), array([ 9.9, 10. , 10.1]))

We shall use the mid-point of each bin for converting from photons/cm^2/s to erg/cm^2/s, and as I can never remember the conversion factor, let's calculate it

>>> emid_kev = (egrid[1:-2] + egrid[2:-1]) / 2
>>> import astropy.units as u
>>> ((1 * u.keV) / (1 * u.erg)).decompose()
<Quantity 1.60217663e-09>
>>> conv = ((1 * u.keV) / (1 * u.erg)).decompose().value
>>> emid_kev = (egrid[1:-2] + egrid[2:-1]) / 2

With this we can compare the flux of the model before and after convolution by cflux. We can see the result is 1e-12 which matches the lg10Flux parameter:

>>> (y1[1:-1] * emid_kev).sum() * conv
2.170144702398361e-06
>>> (y2[1:-1] * emid_kev).sum() * conv
9.999904093891366e-13

TABLE models

The interface is somewhat "janky" - to use an official term - and relies on the user understanding the model metadata. This will be improved upon, but for now you need to know

  • what type it is ("add", "mul", or "exp" for "atable", "mtable", or "etable")
  • what the parameters are (includng whether redshift is added)
  • what the parameter ranges are

With that, the RCS.mod table model - an additive model with three parameters with default values of [1, 0.1, 0.1] and no redshift parameter - can be evaluated:

>>> infile = 'RCS.mod'
>>> mtype = 'add'
>>> pars = [1, 0.1, 0.1]
>>> y = x.tableModel(table=infile, table_type=mtype, pars=pars, energies=egrid)

It is very easy to crash the interpreter - for example

  • if you send in too few parameters
  • if you send in a parameter outside the hard range for that parameter
>>> help(x.tableModel)
Help on built-in function tableModel in module xspec_models_cxc._compiled:

tableModel(...) method of builtins.PyCapsule instance
    tableModel(*args, **kwargs)
    Overloaded function.

    1. tableModel(table: str, table_type: str, pars: numpy.ndarray[numpy.float32], energies: numpy.ndarray[numpy.float32], spectrum: int = 1) -> numpy.ndarray[numpy.float32]

    XSPEC table model.

    2. tableModel(table: str, table_type: str, pars: numpy.ndarray[numpy.float32], energies: numpy.ndarray[numpy.float32], model: numpy.ndarray[numpy.float32], spectrum: int = 1) -> numpy.ndarray[numpy.float32]

    XSPEC table model; inplace.

Directly using the RealArray interface

Version 0.0.24 and later allows us to "directly" use the C++ interface, at the expense of using the x.RealArray type rather than NumPy arrays. The following models

>>> x.list_models(language=x.LanguageStyle.CppStyle8)
['TBabs', 'TBfeo', 'TBgas', 'TBgrain', 'TBpcf', 'TBrel', 'TBvarabs',
'absori', 'acisabs', 'agauss', 'apec', 'bapec', 'bexrav', 'bexriv',
...
'xscat', 'zTBabs', 'zagauss', 'zashift', 'zbknpower', 'zcutoffpl',
'zgauss', 'zkerrbb', 'zlogpar', 'zmshift', 'zpowerlw', 'zxipcf']

all have a "_" variant such as

>>> help(x.TBabs_)
Help on built-in function TBabs_ in module xspec_models_cxc._compiled:

TBabs_(...) method of builtins.PyCapsule instance
    TBabs_(pars: xspec_models_cxc._compiled.RealArray, energies: xspec_models_cxc._compiled.RealArray, out: xspec_models_cxc._compiled.RealArray, spectrum: int = 1, initStr: str = '') -> xspec_models_cxc._compiled.RealArray

    The XSPEC multiplicative TBabs model (1 parameter); RealArray, inplace.

which use this interface. The x.RealArray type

>>> help(x.RealArray)
Help on class RealArray in module xspec_models_cxc._compiled:

class RealArray(pybind11_builtins.pybind11_object)
 |  Method resolution order:
 |      RealArray
 |      pybind11_builtins.pybind11_object
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __getitem__(...)
 |      __getitem__(self: xspec_models_cxc._compiled.RealArray, arg0: int) -> float
 |
 |  __init__(...)
 |      __init__(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. __init__(self: xspec_models_cxc._compiled.RealArray, arg0: int) -> None
 |
 |      Create an array of n zeros.
 |
 |      2. __init__(self: xspec_models_cxc._compiled.RealArray, arg0: numpy.ndarray[numpy.float64]) -> None
 |
 |      Copy the data into an array.
 |
...

will convert a one-dimensional sequence into something that can be sent to these routines (or, when given a non-negative integer, willreturn an array of 0's of that length):

>>> pars = x.RealArray([p.default for p in x.info('TBabs').parameters])
>>> egrid = x.RealArray(np.arange(0.1, 1, 0.1))
>>> out = x.RealArray(len(egrid) - 1)
>>> y = x.TBabs_(energies=egrid, pars=pars, out=out)
tbvabs Version 2.3
Cosmic absorption with grains and H2, modified from
Wilms, Allen, & McCray, 2000, ApJ 542, 914-924
Questions: Joern Wilms
joern.wilms@sternwarte.uni-erlangen.de
joern.wilms@fau.de

http://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/

PLEASE NOTICE:
To get the model described by the above paper
you will also have to set the abundances:
   abund wilm

Note that this routine ignores the current cross section setting
as it always HAS to use the Verner cross sections as a baseline.

>>> y is out
True
>>> y
[2.3158e-154, 2.41183e-26, 5.47728e-10, 4.24854e-05, 0.000648813, 0.00195077, 0.0112892, 0.0261219]

Note that the out argument is changed, as well as being returned (in the same way it works for the inplace versions of this).

This version could have been overloaded onto the model name but I wanted to make it easier to see if things like the symbol overloading make any significant difference to the runtime of a model. Switching to IPython to take advantage of %timeit:

In [1]: import numpy as np

In [2]: import xspec_models_cxc as x

In [3]: pars1 = [p.default for p in x.info('bvapec').parameters]

In [4]: pars2 = x.RealArray(pars1)

In [5]: egrid1 = np.arange(0.1, 11, 0.001)

In [6]: egrid2 = x.RealArray(egrid1)

In [7]: y1 = x.bvapec(energies=egrid1, pars=pars1)
Reading APEC data from 3.0.9


In [8]: out2 = x.RealArray(len(egrid2) - 1)

In [9]: y2 = x.bvapec_(energies=egrid2, pars=pars2, out=out2)

In [10]: (y1 == y2).all()
Out[10]: True

In [11]: %timeit y1 = x.bvapec(energies=egrid1, pars=pars1)
6.85 ms ± 39.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [12]: %timeit y2 = x.bvapec_(energies=egrid2, pars=pars2, out=out2)
7.13 ms ± 26.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

So, for this simple case it doesn't seem worth using the RealArray version (but perhaps not returning the array and other changes could alter this).

Convenience versus speed

One question is how much time is spent in marshallnig data to and from the compiled code? One point of view is "the ability to evaluate a model from Python is worth the cost", but I'd like to see what we can do to mitigate this cost. There are various avenues worth persuing, and this module does some of the following:

  • handle the model evaluation completely in C++ (that is, we encode an AST for expressions like

    "phabs * (powerlaw + apec + gaussian + gaussian)"

    and evalaute the AST in C++).

    I'm interested in this, but haven't got around to working on it yet, and there are issues in how we send in the parameters: see #12

  • the current Sherpa-inspired interface creates the output array each time we call the model, leading to a lot of memory churn. Perhaps we can re-use arrays rather than re-creating them.

    Many of the models have an "inplace" variant which has the out argument which supports this. At the moment I haven't seen any evidence of this making model evaluation faster, but perhaps it needs to be run through a typical "fit" where we may see benefits from reduced memory overhead.

    Notes:

    • The convolution models only support the inplace varsion.
    • Use of the out argument is easy to mess up - see #14
  • the different XSPEC models have different "preferred" interfaces (FORTRAN, C, or C++) and using the correct one should reduce the run-time of the model.

    Initial tests suggest that the conversion cost is not a significant part of the run-time cost of a model, but I can't guarantee it.

    Note that we currently bind to the correct versions for FORTRAN (single precision) and C models, but the C++ models (which, in XSPEC 12.14.1 is 197 of the 293 models we support) are handled using the C interface. To see if this is a problem I have added (in version 0.0.24) the RealArray interface discussed above, but it doesn't seem to make much difference, although this claim needs to be tested.

About

Can we make a usable XSPEC model module in Python **experimental**

Resources

License

Stars

Watchers

Forks

Packages

No packages published