Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added nth root function to sdk.Decimal type #5447

Merged
merged 17 commits into from
Jan 4, 2020
Merged
75 changes: 59 additions & 16 deletions types/decimal.go
Original file line number Diff line number Diff line change
Expand Up @@ -269,7 +269,6 @@ func (d Dec) MulInt64(i int64) Dec {

// quotient
func (d Dec) Quo(d2 Dec) Dec {

// multiply precision twice
mul := new(big.Int).Mul(d.Int, precisionReuse)
mul.Mul(mul, precisionReuse)
Expand Down Expand Up @@ -326,30 +325,74 @@ func (d Dec) QuoInt64(i int64) Dec {
return Dec{mul}
}

// ApproxSqrt returns an approximate sqrt estimation using Newton's method to
// compute square roots x=√d for d > 0. The algorithm starts with some guess and
// ApproxRoot returns an approximate estimation of a Dec's positive real nth root
// using Newton's method (where n is positive). The algorithm starts with some guess and
// computes the sequence of improved guesses until an answer converges to an
// approximate answer. It returns -(sqrt(abs(d)) if input is negative.
func (d Dec) ApproxSqrt() Dec {
// approximate answer. It returns `|d|.ApproxRoot() * -1` if input is negative.
func (d Dec) ApproxRoot(root uint64) (guess Dec, err error) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Where does the panic stem from? I believe all Dec/Int methods panic when too large. Why have this method deviated from that pattern?

Copy link
Member Author

@sunnya97 sunnya97 Dec 29, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It comes from L353 where we take previous guess, to the power of root-1. This causes the big Int to overflow. I feel an error is more proper here, than a panic, because its harder to predict when it will happen. Like in normal arithmetic operations, you know that your inputs are in the danger zone. It's a bit harder to predict here, so I feel throwing an error is more reasonable than panicking.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see.

It comes from L353 where we take previous guess, to the power of root-1. This causes the big Int to overflow.

Is there a way to prevent a guess or short-circuit when we know it'd overflow? This way we can avoid the error return and panic.

Copy link
Member Author

@sunnya97 sunnya97 Jan 2, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You mean try to catch the panic, and then restart with a different initial guess? Couldn't that possibly get into a loop that never ends then

defer func() {
if r := recover(); r != nil {
var ok bool
err, ok = r.(error)
if !ok {
err = errors.New("out of bounds")
}
}
}()

if d.IsNegative() {
return d.MulInt64(-1).ApproxSqrt().MulInt64(-1)
absRoot, err := d.MulInt64(-1).ApproxRoot(root)
return absRoot.MulInt64(-1), err
}

if root == 1 || d.IsZero() || d.Equal(OneDec()) {
return d, nil
}

if root == 0 {
return OneDec(), nil
}

if d.IsZero() {
return ZeroDec()
rootInt := NewIntFromUint64(root)
guess, delta := OneDec(), OneDec()

for delta.Abs().GT(SmallestDec()) {
prev := guess.Power(root - 1)
if prev.IsZero() {
prev = SmallestDec()
}
delta = d.Quo(prev)
delta = delta.Sub(guess)
delta = delta.QuoInt(rootInt)

guess = guess.Add(delta)
}

z := OneDec()
// first guess
z = z.Sub((z.Mul(z).Sub(d)).Quo(z.MulInt64(2)))
return guess, nil
}

// iterate until change is very small
for zNew, delta := z, z; delta.GT(SmallestDec()); z = zNew {
zNew = zNew.Sub((zNew.Mul(zNew).Sub(d)).Quo(zNew.MulInt64(2)))
delta = z.Sub(zNew)
// Power returns a the result of raising to a positive integer power
func (d Dec) Power(power uint64) Dec {
if power == 0 {
return OneDec()
}
tmp := OneDec()
for i := power; i > 1; {
if i%2 == 0 {
i /= 2
} else {
tmp = tmp.Mul(d)
i = (i - 1) / 2
}
d = d.Mul(d)
}
return d.Mul(tmp)
}

return z
// ApproxSqrt is a wrapper around ApproxRoot for the common special case
// of finding the square root of a number. It returns -(sqrt(abs(d)) if input is negative.
func (d Dec) ApproxSqrt() (Dec, error) {
return d.ApproxRoot(2)
}

// is integer, e.g. decimals are zero
Expand Down
45 changes: 44 additions & 1 deletion types/decimal_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -425,6 +425,48 @@ func TestDecCeil(t *testing.T) {
}
}

func TestPower(t *testing.T) {
testCases := []struct {
input Dec
power uint64
expected Dec
}{
{OneDec(), 10, OneDec()}, // 1.0 ^ (10) => 1.0
{NewDecWithPrec(5, 1), 2, NewDecWithPrec(25, 2)}, // 0.5 ^ 2 => 0.25
{NewDecWithPrec(2, 1), 2, NewDecWithPrec(4, 2)}, // 0.2 ^ 2 => 0.04
{NewDecFromInt(NewInt(3)), 3, NewDecFromInt(NewInt(27))}, // 3 ^ 3 => 27
{NewDecFromInt(NewInt(-3)), 4, NewDecFromInt(NewInt(81))}, // -3 ^ 4 = 81
{NewDecWithPrec(1414213562373095049, 18), 2, NewDecFromInt(NewInt(2))}, // 1.414213562373095049 ^ 2 = 2
}

for i, tc := range testCases {
res := tc.input.Power(tc.power)
require.True(t, tc.expected.Sub(res).Abs().LTE(SmallestDec()), "unexpected result for test case %d, input: %v", i, tc.input)
}
}

func TestApproxRoot(t *testing.T) {
testCases := []struct {
input Dec
root uint64
expected Dec
}{
{OneDec(), 10, OneDec()}, // 1.0 ^ (0.1) => 1.0
{NewDecWithPrec(25, 2), 2, NewDecWithPrec(5, 1)}, // 0.25 ^ (0.5) => 0.5
{NewDecWithPrec(4, 2), 2, NewDecWithPrec(2, 1)}, // 0.04 => 0.2
{NewDecFromInt(NewInt(27)), 3, NewDecFromInt(NewInt(3))}, // 27 ^ (1/3) => 3
{NewDecFromInt(NewInt(-81)), 4, NewDecFromInt(NewInt(-3))}, // -81 ^ (0.25) => -3
{NewDecFromInt(NewInt(2)), 2, NewDecWithPrec(1414213562373095049, 18)}, // 2 ^ (0.5) => 1.414213562373095049
{NewDecWithPrec(1005, 3), 31536000, MustNewDecFromStr("1.000000000158153904")},
}

for i, tc := range testCases {
res, err := tc.input.ApproxRoot(tc.root)
require.NoError(t, err)
require.True(t, tc.expected.Sub(res).Abs().LTE(SmallestDec()), "unexpected result for test case %d, input: %v", i, tc.input)
}
}

func TestApproxSqrt(t *testing.T) {
testCases := []struct {
input Dec
Expand All @@ -439,7 +481,8 @@ func TestApproxSqrt(t *testing.T) {
}

for i, tc := range testCases {
res := tc.input.ApproxSqrt()
res, err := tc.input.ApproxSqrt()
require.NoError(t, err)
require.Equal(t, tc.expected, res, "unexpected result for test case %d, input: %v", i, tc.input)
}
}
Expand Down
21 changes: 21 additions & 0 deletions types/int.go
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,13 @@ func NewInt(n int64) Int {
return Int{big.NewInt(n)}
}

// NewIntFromUint64 constructs an Int from a uint64.
func NewIntFromUint64(n uint64) Int {
alexanderbez marked this conversation as resolved.
Show resolved Hide resolved
b := big.NewInt(0)
b.SetUint64(n)
return Int{b}
}

// NewIntFromBigInt constructs Int from big.Int
func NewIntFromBigInt(i *big.Int) Int {
if i.BitLen() > maxBitLen {
Expand Down Expand Up @@ -178,6 +185,20 @@ func (i Int) IsInt64() bool {
return i.i.IsInt64()
}

// Uint64 converts Int to uint64
// Panics if the value is out of range
func (i Int) Uint64() uint64 {
if !i.i.IsUint64() {
panic("Uint64() out of bounds")
}
return i.i.Uint64()
}

// IsUint64 returns true if Uint64() not panics
func (i Int) IsUint64() bool {
return i.i.IsUint64()
}

// IsZero returns true if Int is zero
func (i Int) IsZero() bool {
return i.i.Sign() == 0
Expand Down
8 changes: 8 additions & 0 deletions types/int_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,14 @@ func TestFromInt64(t *testing.T) {
}
}

func TestFromUint64(t *testing.T) {
for n := 0; n < 20; n++ {
r := rand.Uint64()
require.True(t, NewIntFromUint64(r).IsUint64())
require.Equal(t, r, NewIntFromUint64(r).Uint64())
}
}

func TestIntPanic(t *testing.T) {
// Max Int = 2^255-1 = 5.789e+76
// Min Int = -(2^255-1) = -5.789e+76
Expand Down