Skip to content

Commit

Permalink
fix Arith-related deprecations, notably for even-odd
Browse files Browse the repository at this point in the history
  • Loading branch information
palmskog committed Oct 15, 2023
1 parent 70e4104 commit 25a17fc
Showing 1 changed file with 25 additions and 16 deletions.
41 changes: 25 additions & 16 deletions theories/Q_denumerable.v
Original file line number Diff line number Diff line change
Expand Up @@ -21,15 +21,15 @@

(** We start by some general notions for expressing the bijection *)

Definition identity (A:Type) := fun a:A=> a.
Definition compose (A B C:Type) (g:B->C) (f:A->B) := fun a:A=>g(f a).
Definition identity (A:Type) := fun (a:A) => a.
Definition compose (A B C:Type) (g:B->C) (f:A->B) := fun (a:A) => g(f a).

Section Denumerability.

(** What it means to have the same cardinality *)
Definition same_cardinality (A:Type) (B:Type) :=
{f:A->B & { g:B->A |
(forall b,(compose _ _ _ f g) b= (identity B) b) /\
(forall b,(compose _ _ _ f g) b = (identity B) b) /\
forall a,(compose _ _ _ g f) a = (identity A) a}}.

(** What it means to be a denumerable *)
Expand Down Expand Up @@ -58,10 +58,8 @@ Defined.

End Denumerability.


(** We first prove that [Z] is denumerable *)

From Coq Require Div2.
From Coq Require Import ZArith.
From Coq Require Import Lia.

Expand All @@ -73,11 +71,12 @@ Definition Z_to_nat_i (z:Z) :nat :=
| Zneg p => pred (Nat.double (nat_of_P p))
end.

(** Some lemmas about parity. They could be added to [Arith.Div2] *)
Lemma odd_pred2n: forall n : nat, Even.odd n -> {p : nat | n = pred (Nat.double p)}.
(** Some lemmas about parity. *)
Lemma odd_pred2n: forall n : nat, Nat.Odd_alt n -> {p : nat | n = pred (Nat.double p)}.
Proof.
intros n H_odd;
rewrite (Div2.odd_double _ H_odd);
apply Nat.Odd_alt_Odd in H_odd;
rewrite (Nat.Odd_double _ H_odd);
exists (S (Nat.div2 n));
generalize (Nat.div2 n);
clear n H_odd; intros n;
Expand All @@ -86,12 +85,19 @@ Proof.
reflexivity.
Defined.

Lemma even_2n : forall n : nat, Nat.Even_alt n -> {p : nat | n = Nat.double p}.
Proof.
intros n H_even; exists (Nat.div2 n).
apply Nat.Even_alt_Even in H_even.
apply Nat.Even_double; assumption.
Defined.

Lemma even_odd_exists_dec : forall n, {p : nat | n = Nat.double p} + {p : nat | n = pred (Nat.double p)}.
Proof.
intro n;
destruct (Even.even_odd_dec n) as [H_parity|H_parity];
[ left; apply (Div2.even_2n _ H_parity)
| right; apply (odd_pred2n _ H_parity)].
destruct (Nat.Even_Odd_dec n) as [H_parity|H_parity];
[ left; apply Nat.Even_alt_Even in H_parity; apply (even_2n _ H_parity)
| right; apply Nat.Odd_alt_Odd in H_parity; apply (odd_pred2n _ H_parity)].
Defined.

(** An injection from [nat] to [Z] *)
Expand All @@ -106,17 +112,20 @@ Proof.
unfold Nat.double; intros m n; lia.
Defined.

Lemma parity_mismatch_not_eq:forall m n, Even.even m -> Even.odd n -> ~m=n.
Lemma parity_mismatch_not_eq:forall m n, Nat.Even_alt m -> Nat.Odd_alt n -> m <> n.
Proof.
intros m n H_even H_odd H_eq; subst m;
apply (Even.not_even_and_odd n); trivial.
intros m n H_even H_odd H_eq; subst m.
apply Nat.Even_alt_Even in H_even.
apply Nat.Odd_alt_Odd in H_odd.
apply (Nat.Even_Odd_False n); trivial.
Defined.

Lemma even_double:forall n, Even.even (Nat.double n).
Lemma even_double : forall n, Nat.Even_alt (Nat.double n).
Proof.
intro n;
unfold Nat.double;
replace (n + n) with (2*n); auto with arith; lia.
replace (n + n) with (2*n);
[apply Nat.Even_alt_Even; exists n; reflexivity | lia].
Defined.

Lemma double_S_neq_pred:forall m n, ~Nat.double (S m) = pred (Nat.double n).
Expand Down

0 comments on commit 25a17fc

Please sign in to comment.