This repository contains the code and dataset accompanying the paper: Fact Checking with Insufficient Evidence.
The SufficientFacts diagnostic test dataset can be found in:
- data/sufficient_facts directory
- through the HuggingFace datasets hub
Please, consult the README in the corresponding locations for more information on the dataset.
Example script for supervised training:
python3.8 modeling/train.py --gpu --dataset vitaminc --dataset_dir data/vitaminc --model_path vitaminc_roberta_1e5_1 --lr 1e-5 --pretrained_path 'roberta-base' --labels 3 --epochs 3 --max_len 256 --batch_size 16 --test_dir data/vitaminc_const.jsonl
Example script for CAD training:
python3.8 modeling/train.py --gpu --dataset vitaminc --dataset_dir data/vitaminc --lr 1e-5 --pretrained_path 'albert-base-v2' --labels 3 --current_model albert --negatives_mode n_const n_sent_pos --positives_mode p_sent p_sent_const --max_negatives 2 --max_positives 1 --test_dir data/vitaminc_const_rem.jsonl --min_nei_counts 2 --min_nei_preds 0.5 --min_nei_counts_sent 2 --min_nei_preds_sent 0.5 --max_len 256 --batch_size 16 --epochs 3 --sample_instances 20000
Example script for CL loss training:
python3.8 modeling/train_contrastive_loss.py --gpu --dataset vitaminc --dataset_dir data/vitaminc --lr 1e-5 --pretrained_path 'albert-base-v2' --labels 3 --current_model albert --negatives_mode n_const n_sent_pos --positives_mode p_sent p_sent_const --max_negatives 2 --max_positives 1 --test_dir data/vitaminc_const_rem.jsonl --min_nei_counts 2 --min_nei_preds 0.5 --min_nei_counts_sent 2 --min_nei_preds_sent 0.5 --max_len 256 --batch_size 16 --epochs 3 --sample_instances 20000 --temp 1.5
If you use our code or dataset, kindly cite it using
@article{atanasova-etal-2022-fact,
title = "Fact Checking with Insufficient Evidence",
author = "Atanasova, Pepa and
Simonsen, Jakob Grue and
Lioma, Christina and
Augenstein, Isabelle",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "10",
year = "2022",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2022.tacl-1.43",
doi = "10.1162/tacl_a_00486",
pages = "746--763"
}