Skip to content

copenlu/sufficient_facts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Fact Checking with Insufficient Evidence

This repository contains the code and dataset accompanying the paper: Fact Checking with Insufficient Evidence.

Dataset

The SufficientFacts diagnostic test dataset can be found in:

Please, consult the README in the corresponding locations for more information on the dataset.

Contrastive Training Experiments

Example script for supervised training:

python3.8 modeling/train.py --gpu --dataset vitaminc --dataset_dir data/vitaminc --model_path vitaminc_roberta_1e5_1 --lr 1e-5 --pretrained_path 'roberta-base' --labels 3 --epochs 3 --max_len 256 --batch_size 16 --test_dir data/vitaminc_const.jsonl

Example script for CAD training:

python3.8 modeling/train.py --gpu --dataset vitaminc --dataset_dir data/vitaminc --lr 1e-5 --pretrained_path 'albert-base-v2' --labels 3 --current_model albert --negatives_mode n_const n_sent_pos --positives_mode p_sent p_sent_const --max_negatives 2 --max_positives 1 --test_dir data/vitaminc_const_rem.jsonl --min_nei_counts 2 --min_nei_preds 0.5 --min_nei_counts_sent 2 --min_nei_preds_sent 0.5 --max_len 256 --batch_size 16 --epochs 3 --sample_instances 20000

Example script for CL loss training:

python3.8 modeling/train_contrastive_loss.py --gpu --dataset vitaminc --dataset_dir data/vitaminc --lr 1e-5 --pretrained_path 'albert-base-v2' --labels 3 --current_model albert --negatives_mode n_const n_sent_pos --positives_mode p_sent p_sent_const --max_negatives 2 --max_positives 1 --test_dir data/vitaminc_const_rem.jsonl --min_nei_counts 2 --min_nei_preds 0.5 --min_nei_counts_sent 2 --min_nei_preds_sent 0.5 --max_len 256 --batch_size 16 --epochs 3 --sample_instances 20000 --temp 1.5

Citation

If you use our code or dataset, kindly cite it using

@article{atanasova-etal-2022-fact,
    title = "Fact Checking with Insufficient Evidence",
    author = "Atanasova, Pepa  and
      Simonsen, Jakob Grue  and
      Lioma, Christina  and
      Augenstein, Isabelle",
    editor = "Roark, Brian  and
      Nenkova, Ani",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "10",
    year = "2022",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/2022.tacl-1.43",
    doi = "10.1162/tacl_a_00486",
    pages = "746--763"
}

About

Code and dataset for paper "Fact Checking with Insufficient Evidence"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages