generated from precimed/container_template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
85 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# =============================================================== | ||
# Step1. Create binary annotation (for ca. 10M snps, split per chromosome) from genomic intervals (Python) OR from pval of the secondary trait | ||
# =============================================================== | ||
|
||
import pandas as pd | ||
import numpy as np | ||
from intervaltree import Interval, IntervalTree | ||
|
||
df_annot_nss = pd.read_table(r'Pruefer2014_MM.txt', header=None, names=['CHR', 'FROM', 'TO']) | ||
df_annot_brain = pd.read_csv(r'H:\Dropbox\analysis\2017_02_February_28_cognition_Neanderthal\3.14\hpabraingenes_noheader.txt', sep='\t') | ||
|
||
for chri in range(1, 23): | ||
df = pd.read_csv(r'H:\NORSTORE\MMIL\SUMSTAT\LDSR\LDSR_Annot\1000G_Phase3_baselineLD_ldscores\baselineLD.{0}.annot.gz'.format(chri), delim_whitespace=True) | ||
df = df[['CHR', 'BP', 'SNP', 'CM']].copy() | ||
|
||
df_baseline = pd.read_csv(r'H:\NORSTORE\MMIL\SUMSTAT\LDSR\LDSR_Annot\1000G_EUR_Phase3_baseline\baseline.{0}.annot.gz'.format(chri), delim_whitespace=True) | ||
|
||
t_nss = df_annot_nss[df_annot_nss['CHR'] == 'chr{}'.format(chri)] | ||
t_nss = IntervalTree.from_tuples(list(zip(t_nss['FROM'], t_nss['TO']))) | ||
df['NSS'] = [int(bool(t_nss[p])) for p in df['BP']] | ||
|
||
t_brain = df_annot_brain[df_annot_brain['CHR'] == 'chr{}'.format(chri)] | ||
t_brain = IntervalTree.from_tuples(list(zip(t_brain['FROM'], t_brain['TO']))) | ||
df['BRAIN'] = [int(bool(t_brain[p])) for p in df['BP']] | ||
|
||
df['NSSBRAIN'] = df['NSS'] & df['BRAIN'] | ||
df['CODING'] = df_baseline['Coding_UCSC.bed'] | df_baseline['Intron_UCSC.bed'] | df_baseline['UTR_3_UCSC.bed'] | df_baseline['UTR_5_UCSC.bed'] | ||
|
||
print(df.shape, df['NSS'].sum(), df['BRAIN'].sum(), df['NSSBRAIN'].sum(), df['CODING'].sum()) | ||
|
||
for feature in ['NSS', 'BRAIN', 'NSSBRAIN', 'CODING']: | ||
df[['CHR', 'BP', 'SNP', 'CM', feature]].to_csv(r'H:\Dropbox\analysis\2018_01_15_NSS\2018_02_26\{0}.{1}.annot.gz'.format(feature, chri), index=False, sep='\t', compression='gzip') | ||
|
||
|
||
# =============================================================== | ||
# Step2. Convert binary annotations into LD scores (shell) | ||
# =============================================================== | ||
|
||
export LDSC_PY=/mnt/h/GitHub/ldsc/ldsc.py | ||
export LDSCDATA=/mnt/h/NORSTORE/MMIL/SUMSTAT/LDSR/LDSR_Data | ||
export LDSCANNOT=/mnt/h/NORSTORE/MMIL/SUMSTAT/LDSR/LDSR_Annot | ||
export NSSANNOT=/mnt/h/Dropbox/analysis/2018_01_15_NSS/2018_02_26 | ||
export RESULT=/mnt/h/Dropbox/analysis/2018_01_15_NSS/2018_02_26 | ||
export FEATURES='NSS BRAIN NSSBRAIN CODING' | ||
for CHR in {1..22}; do for FEATURE in $FEATURES; do echo "python $LDSC_PY --l2 --bfile ${LDSCANNOT}/1000G_EUR_Phase3_plink/1000G.EUR.QC.$CHR --ld-wind-cm 1 --print-snps ${LDSCANNOT}/1000G_Phase3_baselineLD_ldscores/list.txt --annot ${NSSANNOT}/$FEATURE.$CHR.annot.gz --out ${NSSANNOT}/$FEATURE.$CHR"; done; done | parallel -j16 | ||
|
||
# =============================================================== | ||
# Step3. Run stratified LDSR to compute partitioned heritability (shell) | ||
# =============================================================== | ||
|
||
export TASKS='GIANT_BMI_2015_EUR_lift GIANT_HEIGHT_2014_lift UKB_COLLEGE_2016 SSGAC_EDU_2016 CHARGE_COG_2015_lift CTG_INTELLIGENCE_2017 UKB_VNR_2016 UKB_RT_2016 CTG_INTELLIGENCE_2018 PGC_SCZ_2014 PGC_BIP_2016_qc' | ||
for TASK in $TASKS; do for FEATURE in $FEATURES; do echo "python $LDSC_PY --h2 ${LDSCDATA}/${TASK}_noMHC.sumstats.gz --out ${RESULT}/${TASK}.${FEATURE}.partitioned --ref-ld-chr ${LDSCANNOT}/1000G_EUR_Phase3_baseline/baseline.,${NSSANNOT}/${FEATURE}. --w-ld-chr ${LDSCANNOT}/1000G_Phase3_weights_hm3_no_MHC/weights.hm3_noMHC. --overlap-annot --print-coefficients --frqfile-chr ${LDSCANNOT}/1000G_Phase3_frq/1000G.EUR.QC. "; done; done | parallel --dry-run | ||
|
||
# =============================================================== | ||
# Step4. Combine resulting files together (python) | ||
# =============================================================== | ||
|
||
# Aggregate results together | ||
import glob | ||
import os | ||
import re | ||
import pandas as pd | ||
import numpy as np | ||
import scipy.stats | ||
|
||
dir = r'H:\Dropbox\analysis\2018_01_15_NSS\2018_02_26\*.partitioned.results' | ||
files = glob.glob(dir) | ||
df_total = None | ||
for fullfile in files: | ||
file = os.path.split(fullfile)[1] | ||
df = pd.read_csv(fullfile, delim_whitespace=True) | ||
df['file'] = file | ||
df_total = (df if df_total is None else df_total.append(df)) | ||
|
||
df_total['TRAIT'] = [x.split('.')[0] for x in df_total['file']] | ||
df_total['FEATURE'] = [x.split('.')[1] for x in df_total['file']] | ||
df_total.to_csv(r'H:\Dropbox\analysis\2018_01_15_NSS\2018_02_26_partitioned.results.csv', index=False, sep='\t') | ||
|
||
df_total['Coefficient_p-value'] = scipy.stats.norm.sf(abs(df_total['Coefficient_z-score']))*2 # 2-sided | ||
|
||
# =============================================================== | ||
# Step5. Filter table using Excel. (manually) | ||
# =============================================================== |