Skip to content

Commit

Permalink
fix(deps): Update dependency numpy to v1.26.1 (#76)
Browse files Browse the repository at this point in the history
This PR contains the following updates:

| Package | Update | Change |
|---|---|---|
| [numpy](https://numpy.org) ([source](https://togithub.com/numpy/numpy), [changelog](https://numpy.org/doc/stable/release)) | patch | `==1.26.0` -> `==1.26.1` |

---

### Release Notes

<details>
<summary>numpy/numpy (numpy)</summary>

### [`v1.26.1`](https://togithub.com/numpy/numpy/releases/tag/v1.26.1)

[Compare Source](https://togithub.com/numpy/numpy/compare/v1.26.0...v1.26.1)

### NumPy 1.26.1 Release Notes

NumPy 1.26.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

-   Improved detection of BLAS and LAPACK libraries for meson builds
-   Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

#### Build system changes

##### Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
`pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use:

    $ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
    $ # OR
    $ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through `pkg-config` or
CMake.

Besides `-Dblas` and `-Dlapack`, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

-   `-Dblas-order` and `-Dlapack-order`: a list of library names to
    search for in order, overriding the default search order.
-   `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and
    LAPACK. Note that with this release, ILP64 support has been extended
    to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
    in previous releases.
-   `-Dallow-noblas`: if set to `true`, allow NumPy to build with its
    internal (very slow) fallback routines instead of linking against an
    external BLAS/LAPACK library. *The default for this flag may be
    changed to \`\`true\`\` in a future 1.26.x release, however for
    1.26.1 we'd prefer to keep it as \`\`false\`\` because if failures
    to detect an installed library are happening, we'd like a bug
    report for that, so we can quickly assess whether the new
    auto-detection machinery needs further improvements.*
-   `-Dmkl-threading`: to select the threading layer for MKL. There are
    four options: `seq`, `iomp`, `gomp` and `tbb`. The default is
    `auto`, which selects from those four as appropriate given the
    version of MKL selected.
-   `-Dblas-symbol-suffix`: manually select the symbol suffix to use for
    the library - should only be needed for linking against libraries
    built in a non-standard way.

#### New features

##### `numpy._core` submodule stubs

`numpy._core` submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

#### Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

-   Andrew Nelson
-   Anton Prosekin +
-   Charles Harris
-   Chongyun Lee +
-   Ivan A. Melnikov +
-   Jake Lishman +
-   Mahder Gebremedhin +
-   Mateusz Sokół
-   Matti Picus
-   Munira Alduraibi +
-   Ralf Gommers
-   Rohit Goswami
-   Sayed Adel

#### Pull requests merged

A total of 20 pull requests were merged for this release.

-   [#&#8203;24742](https://togithub.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version
-   [#&#8203;24748](https://togithub.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py
-   [#&#8203;24771](https://togithub.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`...
-   [#&#8203;24773](https://togithub.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none
-   [#&#8203;24776](https://togithub.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none
-   [#&#8203;24785](https://togithub.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks ([#&#8203;24753](https://togithub.com/numpy/numpy/issues/24753))
-   [#&#8203;24786](https://togithub.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus.
-   [#&#8203;24803](https://togithub.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix
-   [#&#8203;24804](https://togithub.com/numpy/numpy/pull/24804): MAINT: fix licence path win
-   [#&#8203;24813](https://togithub.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros.
-   [#&#8203;24831](https://togithub.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86\_64 ([#&#8203;24828](https://togithub.com/numpy/numpy/issues/24828))
-   [#&#8203;24840](https://togithub.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py
-   [#&#8203;24870](https://togithub.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting
-   [#&#8203;24872](https://togithub.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy.
-   [#&#8203;24879](https://togithub.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI...
-   [#&#8203;24899](https://togithub.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI...
-   [#&#8203;24902](https://togithub.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build...
-   [#&#8203;24906](https://togithub.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler`
-   [#&#8203;24911](https://togithub.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
-   [#&#8203;24912](https://togithub.com/numpy/numpy/pull/24912): BUG: loongarch doesn't use REAL(10)

#### Checksums

##### MD5

    bda38de1a047dd9fdddae16c0d9fb358  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
    196d2e39047da64ab28e177760c95461  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
    9d25010a7bf50e624d2fed742790afbd  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    9b22fa3d030807f0708007d9c0659f65  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    eea626b8b930acb4b32302a9e95714f5  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
    3c40ef068f50d2ac2913c5b9fa1233fa  numpy-1.26.1-cp310-cp310-win32.whl
    315c251d2f284af25761a37ce6dd4d10  numpy-1.26.1-cp310-cp310-win_amd64.whl
    ebdd5046937df50e9f54a6d38c5775dd  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
    682f9beebe8547f205d6cdc8ff96a984  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
    e86da9b6040ea88b3835c4d8f8578658  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    ebcb6cf7f64454215e29d8a89829c8e1  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    a8c89e13dc9a63712104e2fb06fb63a6  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
    339795930404988dbc664ff4cc72b399  numpy-1.26.1-cp311-cp311-win32.whl
    4ef5e1bdd7726c19615843f5ac72e618  numpy-1.26.1-cp311-cp311-win_amd64.whl
    3aad6bc72db50e9cc88aa5813e8f35bd  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
    fd62f65ae7798dbda9a3f7af7aa5c8db  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
    104d939e080f1baf0a56aed1de0e79e3  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    c44b56c96097f910bbec1420abcf3db5  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    1dce230368ae5fc47dd0fe8de8ff771d  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
    d93338e7d60e1d294ca326450e99806b  numpy-1.26.1-cp312-cp312-win32.whl
    a1832f46521335c1ee4c56dbf12e600b  numpy-1.26.1-cp312-cp312-win_amd64.whl
    946fbb0b6caca9258985495532d3f9ab  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
    78c2ab13d395d67d90bcd6583a6f61a8  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
    0a9d80d8b646abf4ffe51fff3e075d10  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    0229ba8145d4f58500873b540a55d60e  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    9179fc57c03260374c86e18867c24463  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
    246a3103fdbe5d891d7a8aee28875a26  numpy-1.26.1-cp39-cp39-win32.whl
    4589dcb7f754fade6ea3946416bee638  numpy-1.26.1-cp39-cp39-win_amd64.whl
    3af340d5487a6c045f00fe5eb889957c  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
    28aece4f1ceb92ec463aa353d4a91c8b  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    bbd0461a1e31017b05509e9971b3478e  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
    2d770f4c281d405b690c4bcb3dbe99e2  numpy-1.26.1.tar.gz

##### SHA256

    82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
    cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
    d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
    d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297  numpy-1.26.1-cp310-cp310-win32.whl
    d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab  numpy-1.26.1-cp310-cp310-win_amd64.whl
    cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
    1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
    d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
    b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b  numpy-1.26.1-cp311-cp311-win32.whl
    3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53  numpy-1.26.1-cp311-cp311-win_amd64.whl
    1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
    afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
    a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
    af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66  numpy-1.26.1-cp312-cp312-win32.whl
    9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7  numpy-1.26.1-cp312-cp312-win_amd64.whl
    bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
    e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
    9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
    d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104  numpy-1.26.1-cp39-cp39-win32.whl
    59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2  numpy-1.26.1-cp39-cp39-win_amd64.whl
    06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
    76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
    c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe  numpy-1.26.1.tar.gz

</details>

---

### Configuration

📅 **Schedule**: Branch creation - "before 4am on the first day of the month" (UTC), Automerge - At any time (no schedule defined).

🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied.

♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 **Ignore**: Close this PR and you won't be reminded about this update again.

---

 - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box

---

This PR has been generated by [Renovate Bot](https://togithub.com/renovatebot/renovate).
<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzNi4xMDkuNCIsInVwZGF0ZWRJblZlciI6IjM2LjEwOS40IiwidGFyZ2V0QnJhbmNoIjoibWFpbiJ9-->
  • Loading branch information
cq-bot authored Nov 1, 2023
1 parent 8626aa2 commit 3a3a2be
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
"iniconfig==2.0.0",
"Jinja2==3.1.2",
"MarkupSafe==2.1.3",
"numpy==1.26.0",
"numpy==1.26.1",
"packaging==23.1",
"pandas==2.1.1",
"pluggy==1.3.0",
Expand Down

0 comments on commit 3a3a2be

Please sign in to comment.