Skip to content

Fully-fledged random number generator library with high quality implementations of Xorshift, Xorwow, Mersenne Twister, PCG and LCG. Each implements a standard API producing number distributions that exactly match the original implementations.

License

Notifications You must be signed in to change notification settings

chrisakroyd/random-seedable

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

random-seedable

Coverage Status npm version npm minzip

Fully-fledged random number generator library offering both 32 bit and 64 bit high quality implementations of Xorshift, Xorwow, Mersenne Twister, PCG, and LCG. Each implements a standard API producing number distributions that exactly match the original implementations. Typescript compatible.

Highlights

  • Avoids the state overflow problems that plague other javascript implemented random number generators.
  • Matches the output of original authored C/C++ implementations for all algorithms.
  • 32 bit and 64 bit generators.
  • Simple, common API to all generators.
  • Light footprint.
  • Browser support.
  • ES Style module.

Install

npm install random-seedable --save

Getting Started

Just want to use a random generator with no hassle? All you've got to do is import random, and use it as you would a generator you initialised yourself.

Simply import random and call whatever method you please,

import random from 'random-seedable';

random.bool(); // false
random.int(); // 2346
random.float(); // 0.34527
random.shuffle([1, 2, 3, 1, 4]); // [2, 4, 3, 1, 1]
random.choice([1, 2, 3, 1, 4]); // 2

Want a random generator with a seed you can set? Just import the generator you wish and initialise it yourself.

import { XORShift } from 'random-seedable';

const random = new XORShift(123456789);
random.int(); // 123312
random.bool(); // true
random.shuffle([1, 2, 3, 1, 4]); // [2, 4, 3, 1, 1]
random.choice([1, 2, 3, 1, 4]); // 2

Once the generator is initialised, the seed can be changed using the seed setter function.

import { XORShift } from 'random-seedable';

const random = new XORShift(123456789);

console.log(random.seed); // 123456789

random.seed = 987654321;

console.log(random.seed); // 987654321

Condensed Documentation

PRNGs

Supported PRNGs and their default initialisations.

Class Default Initialisation Integer output
LCG new LCG(Date.now(), 1664525, 1013904223, 4294967296); 32 bit
PCG new PCG(Date.now(), 6364136223846793005n, 1442695040888963407n); 32 bit
MersenneTwister new MersenneTwister(Date.now(), 624, 397); 32 bit
XORShift new XORShift(Date.now(), 13, 17, 5); 32 bit
XORShift64 new XORShift64(Date.now(), 13, 7, 17); 64 bit
XORShift128 new XORShift128(Date.now(), 362436069, 521288629, 88675123); 32 bit
XORShift128Plus new XORShift128Plus(Date.now(), 362436069); 64 bit
XORWow new XORWow(Date.now(), 362436069, 521288629, 88675123, 5783321, 6615241, 362437); 32 bit
random default PRNG, same as XORShift64 64 bit

PRNG methods.

Each PRNG has the following methods.

Method Parameters Return
.bool() None Boolean.
.coin(pTrue) pTrue:Number Boolean.
.int() None Number.
.bigInt() None BigInt.
.float() None Float.
.float53() None Float spread over full range.
.randRange(min, max) min:Number, max:Number min <= Number <= max
.randBelow(max) max:Number Number <= Max
.choice(array) array:[?] Item from array of type ?
.shuffle(array, inPlace = true) array:[?], inPlace:Boolean Shuffled Array[?]
.boolArray(size) size:Number Array[Boolean] of length size.
.coinArray(size, pTrue) size:Number, pTrue:Number Array[Boolean] of length size.
.intArray(size) size:Number Array[Number] of length size.
.bigIntArray(size) size:Number Array[BigInt] of length size.
.randRangeArray(size, min, max) size:Number, min:Number, max:Number Array[Number] of length size filled w/ min <= num <= max.
.floatArray(size) size:Number Array[Number] between 0.0 - 1.0 of length size.
.float53Array(size) size:Number Array[Number] between 0.0 - 1.0 of length size.

Full Documentation

LCG

Linear Congruential Generator (LCG) is a simple generator originally devised in 1951, if you need something quick with minimal memory usage and not the best quality randomness, this is for you. 32 bits of output.

Parameters
  • seed -> Initial seed.
  • a -> Multiplier parameter.
  • c -> Increment parameter.
  • m -> Modulus parameter.
Example
const random = new LCG(1234, 1664525, 1013904223, 4294967296);

PCG

Permuted Congruential Generator (PCG) is again, a relatively simple generator that improves on the qualites of LCG by improving its randomness quality by increasing its state size and using only the most significant bits to produce the output. 32 bits of output.

Parameters
  • seed -> Initial seed.
  • mul -> Multiplier parameter.
  • inc -> Increment parameter.
Example
const random = new PCG(0x4d595df4d0f33173n, 6364136223846793005n, 1442695040888963407n);

MersenneTwister

Mersenne Twister is a widely used PRNG, most well known for being the Python and Excel default with an extremely large state. 32 bits of output.

Parameters
  • seed -> Initial seed.
  • n -> Degree of recurrence.
  • m -> Middle word, offset used during recurrence.
Example
const random = new MersenneTwister(5489, 624, 397);

XORShift

XorShift generators are fast, efficient generators with good randomness quality. This generator has 32 bit output with 32 bits of internal state.

Parameters
  • seed -> Initial seed.
  • a -> First bit shift parameter.
  • b -> Second bit shift parameter.
  • c -> Third bit shift parameter.
Example
const random = new XORShift(11234, 13, 17, 5);

XORShift64

XorShift generators are fast, efficient generators with good randomness quality. This implementation has 64 bit output with 64 bits of internal state.

Parameters
  • seed -> Initial seed.
  • a -> First bit shift parameter.
  • b -> Second bit shift parameter.
  • c -> Third bit shift parameter.
Example
const random = new XORShift64(11234, 13, 7, 17);

XORShift128

XorShift generators are fast, efficient generators with good randomness quality. This implementation has 32 bit output with 128 bits of internal state.

Parameters
  • seed -> Initial seed.
  • y -> First bit shift parameter.
  • z -> Second bit shift parameter.
  • w -> Third bit shift parameter.
Example
const random = new XORShift128(Date.now(), 362436069, 521288629, 88675123);

XORShift128Plus

XorShift generators are fast, efficient generators with good randomness quality. 64 bits of output with 128 internal state.

Parameters
  • seed -> Initial seed.
  • y -> Second seed.
Example
const random = new XORShift128Plus(Date.now(), 362436069);

XORWow

XorWow is an improved version of XorShift and default generator of Nvidia CUDA. 32 bits of output.

Parameters
  • seed -> Initial seed.
  • y -> First state initial value.
  • z -> Second state initial value.
  • w -> Third state initial value.
  • v -> Fourth state initial value.
  • d -> Fifth state initial value.
  • weyl -> Additive counter.
Example
const random = new XORWow(123456789, 362436069, 521288629, 88675123, 5783321, 6615241, 362437);

bool

random.bool()

Generates a boolean with the formula random.float() >= 0.5

Parameters

None.

Returns

Boolean True/False.

Example
random.bool(); // true

coin

random.coin(pTrue)

Generates a random boolean with probability of it being true denoted by the pTrue parameter. For example, when pTrue=0.8, 80% of the numbers generated with this method will be true.

Parameters
  • pTrue -> Probability of generating a true value.
Returns

Boolean True/False.

Example
random.coin(0.8); // true

int

random.int()

Generates and returns the next number in the PRNGs sequence.

Parameters

None.

Returns

Number less than 2 ** 32 for 32 bit generators.

Example
random.int(); // 85424123

bigInt

random.bigInt()

Generates and returns the next number in the PRNGs sequence and returns it as a Bigint.

Parameters

None.

Returns

Number less than 2 ** 32 for 32 bit generators represented as a BigInt class. Further reading on Big Integers

Example
random.bigInt(); // 85424123n

float

random.float()

Generates a random floating point number.

Parameters

None.

Returns

Float between 0.0 - 1.0.

Example
random.float(); // 0.234242

float53

random.float53()

Generates a random floating point number.

Parameters

None.

Returns

Float between 0.0 - 1.0.

Example
random.float53(); // 0.2342422341231

randRange

random.randRange(min, max)

Generates a number within the given range.

Parameters
  • min -> Lower bound of the numbers to generate (inclusive).
  • max -> Upper bound of the numbers to generate (inclusive).
Returns

Number min <= Number <= max.

Example
const lowerBound = 4;
const upperBound = 2432;
random.randRange(lowerBound, upperBound); // 36.

randBelow

random.randBelow(max)

Generates a number below the given maximum.

Parameters
  • max -> Upper bound of the numbers to generate (inclusive).
Returns

Number <= max

Example
const upperBound = 2432;
random.randBelow(upperBound);  // 285.

choice

random.choice(array)

Picks a random element from the array.

Parameters
  • array -> Array of any type from which we randomly select one item.
Returns

A singular item from the array of type ?.

Example
const arr = [1, 4, 2, 3];
random.choice(arr); // 4

shuffle

random.shuffle(array, inPlace = false)

Randomly shuffles the given array using the fisher-yates algorithm.

Parameters
  • array -> Array of any type to be shuffled.
  • inPlace -> Whether to shuffle the reference input array or return a new, shuffled array.
Returns

Array shuffled (inPlace === false), shuffled copy of array (inPlace === true).

Examples
const arr = [1, 4, 2, 3];
const shuffled = random.shuffle(arr, false);
console.log(arr); // [1, 4, 2, 3]
console.log(shuffled); // [4, 2, 3, 1]
const arr = [1, 4, 2, 3];
const shuffled = random.shuffle(arr, true);
console.log(arr); // [4, 2, 3, 1]
console.log(shuffled); // [4, 2, 3, 1]

boolArray

random.boolArray(size)

Generates an n size array populated with booleans.

Parameters
  • size -> Size of the array to generate.
Returns

Array[Boolean] of length size.

Example
const size = 256;
random.boolArray(size);

coinArray

random.coinArray(size, pTrue)

Generates an n size array of random booleans with probability of it being true denoted by the pTrue parameter. For example, when pTrue=0.8, 80% of the numbers in the generated array will be true.

Parameters
  • size -> Size of the array to generate.
  • pTrue -> Probability of generating a true value.
Returns

Array[Boolean] of length size.

Example
const size = 256;
const pTrue = 0.8;
random.coinArray(size, pTrue);

intArray

random.intArray(size)

Generates an n size array populated with integers.

Parameters
  • size -> Size of the array to generate.
Returns

Array[Number] of length size.

Example
const size = 256;
random.intArray(size);

bigIntArray

random.bigIntArray(size)

Generates an n size array populated with Big Integers.

Parameters
  • size -> Size of the array to generate.
Returns

Array[BigInt] of length size.

Example
const size = 256;
random.bigIntArray(size);

rangeRangeArray

random.randRangeArray(size, min, max)

Generates an n size array populated within the given range.

Parameters
  • size -> Size of the array to generate.
  • min -> Lower bound of the numbers to generate (inclusive).
  • max -> Upper bound of the numbers to generate (inclusive).
Returns

Array[Number] of length size filled w/ min <= num <= max.

Example
const size = 256;
const lowerBound = 4;
const upperBound = 2432;
random.randRangeArray(size, lowerBound, upperBound);

floatArray

random.floatArray(size)

Generates an n size array populated with floats.

Parameters
  • size -> Size of the array to generate.
Returns

Array[Number] between 0.0 - 1.0 of length size.

Example
const size = 256;
random.floatArray(size);

float53Array

random.float53Array(size)

Generates an n size array populated with floats.

Parameters
  • size -> Size of the array to generate.
Returns

Array[Number] between 0.0 - 1.0 of length size.

Example
const size = 256;
random.float53Array(size);

License

See LICENSE file.

Resources

About

Fully-fledged random number generator library with high quality implementations of Xorshift, Xorwow, Mersenne Twister, PCG and LCG. Each implements a standard API producing number distributions that exactly match the original implementations.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published