GA-Net: Guided Aggregation Net for End-to-end Stereo Matching
gcc: >= 5.3
GPU memory: >= 6.5G (for testing)
Pytorch: >= 1.0
Cuda: >=9.2
My platform/settings: ubuntu 18.04 + cuda 10.1 + python 3.6
Requirements
- pip install torch torchvision
- pip install scikit-image
- pip install opencv-python==3.4.2.17 opencv-contrib-python==3.4.2.17
sh compile.sh
Download pre-trained weight and compile
With GPU:
python main.py --input-left="./data/Synthetic/TL0.png" --input-right="./data/Synthetic/TR0.png" --output="./result/Synthetic/TL0.pfm"
Without GPU:
python main.py --input-left="./data/Synthetic/TL0.png" --input-right="./data/Synthetic/TR0.png" --output="./result/Synthetic/TL0.pfm" --cuda False
- --input-left "path to left image"
- --input-right "path to right image"
- --output "path to output PFM file"
- --cuda use GPU or not (default=True)
@inproceedings{Zhang2019GANet,
title={GA-Net: Guided Aggregation Net for End-to-end Stereo Matching},
author={Zhang, Feihu and Prisacariu, Victor and Yang, Ruigang and Torr, Philip HS},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={185--194},
year={2019}
}