Skip to content

cavalleria/humanpose.pytorch

Repository files navigation

humanpose.pytorch

Introduction

This is an human pose estimation pytorch implementation derivated from deep-high-resolution-net.pytorch, aims to achieve lightweight real-time application.

Features

  • It support Distributed DataParallel training, much faster than origin repo.
  • support lightweight pose backbones.
  • support lightweight mobile hunman detector yolov3mobile.

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1
pose_hrnet_w32 97.067 95.686 90.21 85.644 89.077 85.795 82.711 89.927 37.931
pose_hrnet_w48 96.930 95.771 90.864 86.329 88.731 86.862 82.829 90.208 38.002

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input size #Params FLOPs Weight size AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w18_v1 256x192 1.3M 0.68G 5.3M 0.572 0.863 0.644 0.545 0.614 0.612 0.876 0.687 0.579 0.661
pose_hrnet_w18_v2 256x192 3.7M 1.8G 15M 0.710 0.916 0.784 0.685 0.753 0.740 0.922 0.806 0.710 0.786
pose_hrnet_w18_v2_softargmax 256x192 3.7M 1.8G 15M 0.713 0.916 0.783 0.685 0.758 0.743 0.923 0.809 0.711 0.792
pose_hrnet_w32 256x192 28.5M 7.1G 110M 0.765 0.936 0.838 0.740 0.810 0.794 0.945 0.858 0.763 0.842
lpn_18 256x192 0.47M 0.42G 1.9M 0.445 0.773 0.445 0.434 0.467 0.497 0.798 0.519 0.474 0.531
lpn_18h 256x192 0.50M 0.43G 2.1M 0.486 0.806 0.506 0.472 0.511 0.533 0.821 0.567 0.508 0.570
lpn_34 256x192 0.59M 0.43G 2.5M 0.493 0.808 0.522 0.478 0.515 0.538 0.825 0.577 0.514 0.573
lpn_34h 256x192 0.66M 0.46G 2.7M 0.536 0.830 0.579 0.520 0.564 0.579 0.849 0.630 0.552 0.618
lpn_50 256x192 2.9M 1.0G 12M 0.684 0.904 0.762 0.659 0.724 0.717 0.914 0.789 0.687 0.763
lpn_100 256x192 6.7M 1.8G 27M 0.721 0.915 0.805 0.699 0.764 0.754 0.929 0.825 0.725 0.799

Iterative training strategy

lpn18h AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
stage0 0.486 0.806 0.506 0.472 0.511 0.533 0.821 0.567 0.508 0.570
stage1 0.496 0.807 0.521 0.483 0.521 0.541 0.822 0.577 0.517 0.577
stage2 0.505 0.808 0.540 0.491 0.529 0.549 0.825 0.591 0.524 0.586
stage3 0.510 0.819 0.542 0.497 0.536 0.555 0.832 0.598 0.530 0.591
stage4 0.514 0.819 0.543 0.500 0.538 0.558 0.832 0.599 0.533 0.595
stage5 0.517 0.819 0.553 0.500 0.544 0.559 0.834 0.602 0.533 0.598
stage6 0.520 0.820 0.557 0.503 0.546 0.563 0.836 0.607 0.537 0.601

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 8 NVIDIA V100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v1.0.0 following official instruction.

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  6. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── tools 
    ├── README.md
    └── requirements.txt
    
  7. Download pretrained models from our model zoo(GoogleDrive or OneDrive)

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- hrnet_w32-36af842e.pth
             |   |-- hrnet_w48-8ef0771d.pth
             |   |-- resnet50-19c8e357.pth
             |-- pose_coco
             |   |-- pose_hrnet_w32_256x192.pth
             |   |-- pose_hrnet_w32_384x288.pth
             |   |-- pose_hrnet_w48_256x192.pth
             |   |-- pose_hrnet_w48_384x288.pth
             |   |-- pose_resnet_50_256x192.pth
             |   `-- pose_resnet_50_384x288.pth
             `-- pose_mpii
                 |-- pose_hrnet_w32_256x256.pth
                 |-- pose_hrnet_w48_256x256.pth
                 `-- pose_resnet_50_256x256.pth
    
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Training and Testing

Testing on MPII dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_mpii/pose_hrnet_w32_256x256.pth

Training on MPII dataset

python tools/train.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml

Testing on COCO val2017 dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth \
    TEST.USE_GT_BBOX False

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \

Visualization

Visualizing predictions on COCO val

python visualization/plot_coco.py \
    --prediction output/coco/w48_384x288_adam_lr1e-3/results/keypoints_val2017_results_0.json \
    --save-path visualization/results

Acknowledgement

Contact

cavallyb@gmail.com

Releases

No releases published

Packages

No packages published

Languages