-
Notifications
You must be signed in to change notification settings - Fork 231
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5889753
commit 6919d7b
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import torch | ||
import numpy as np | ||
|
||
def test_per_channel_mean(inp, max_chunk_memory=1024*1024*1024, atol=1e-5, rtol=1e-5): | ||
# Original method | ||
x_mean_original = inp.abs().view(-1, inp.shape[-1]).mean(0) | ||
|
||
# New method with chunking | ||
inp_flat = inp.cpu().abs().view(-1, inp.shape[-1]) | ||
num_elements = inp_flat.size(0) | ||
num_channels = inp_flat.size(1) | ||
element_size_bytes = inp_flat.element_size() * 2 | ||
|
||
chunk_size = int(max_chunk_memory // (element_size_bytes * num_channels)) | ||
chunk_size = min(chunk_size, num_elements) | ||
|
||
x_sum = torch.zeros(num_channels, dtype=torch.float32, device=inp.device) | ||
|
||
for i in range(0, num_elements, chunk_size): | ||
end = min(i + chunk_size, num_elements) | ||
chunk_sum = inp_flat[i:end].to(torch.float32).sum(dim=0) | ||
x_sum += chunk_sum.to(inp.device) | ||
|
||
x_mean_new = (x_sum / num_elements).to(inp.dtype) | ||
|
||
# Compare results | ||
are_close = torch.allclose(x_mean_original, x_mean_new, atol=atol, rtol=rtol) | ||
max_diff = torch.max(torch.abs(x_mean_original - x_mean_new)).item() | ||
|
||
print(f"Results are close: {are_close}") | ||
print(f"Maximum difference: {max_diff}") | ||
|
||
return are_close | ||
|
||
|
||
def pseudo_quantize_tensor(w: torch.Tensor, group_size=128, w_bit=4): | ||
org_w_shape = w.shape | ||
if group_size > 0: | ||
assert org_w_shape[-1] % group_size == 0 | ||
w = w.reshape(-1, group_size) | ||
assert w.dim() == 2 | ||
assert torch.isnan(w).sum() == 0 | ||
|
||
# zero point quantization | ||
max_val = w.amax(dim=1, keepdim=True) | ||
min_val = w.amin(dim=1, keepdim=True) | ||
max_int = 2**w_bit - 1 | ||
min_int = 0 | ||
scales = (max_val - min_val).clamp(min=1e-5) / max_int | ||
zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int) | ||
w = ( | ||
torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros | ||
) * scales | ||
zeros = zeros.view(org_w_shape[0], -1) | ||
|
||
assert torch.isnan(scales).sum() == 0 | ||
assert torch.isnan(w).sum() == 0 | ||
|
||
scales = scales.view(org_w_shape[0], -1) | ||
w = w.reshape(org_w_shape) | ||
|
||
return w, scales, zeros | ||
|
||
|
||
def test_loss_computation(fp16_output, int_w_output, max_chunk_memory=1024*1024*1024, atol=1e-5, rtol=1e-5): | ||
# Original method | ||
loss_original = (fp16_output - int_w_output).float().pow(2).mean().item() | ||
|
||
# New method with chunking | ||
@torch.no_grad() | ||
def _compute_loss(fp16_output, int_w_output, device, max_chunk_memory): | ||
loss = 0.0 | ||
fp16_output_flat = fp16_output.view(-1) | ||
int_w_output_flat = int_w_output.view(-1) | ||
num_elements = fp16_output_flat.size(0) | ||
element_size_bytes = fp16_output.element_size() | ||
|
||
chunk_size = max_chunk_memory // (element_size_bytes * 2) | ||
chunk_size = min(chunk_size, num_elements) | ||
|
||
fp16_chunks = torch.split(fp16_output_flat, chunk_size) | ||
int_w_chunks = torch.split(int_w_output_flat, chunk_size) | ||
|
||
for fp16_chunk, int_w_chunk in zip(fp16_chunks, int_w_chunks): | ||
chunk_loss = (fp16_chunk.to(device) - int_w_chunk.to(device)).float().pow(2).sum().item() | ||
loss += chunk_loss | ||
|
||
loss /= num_elements | ||
return loss | ||
|
||
loss_new = _compute_loss(fp16_output, int_w_output, fp16_output.device, max_chunk_memory) | ||
|
||
# Compare results | ||
are_close = np.isclose(loss_original, loss_new, atol=atol, rtol=rtol) | ||
diff = abs(loss_original - loss_new) | ||
|
||
print(f"Results are close: {are_close}") | ||
print(f"Difference: {diff}") | ||
|
||
return are_close | ||
|
||
fp16_output = torch.randn(1000, 1000, 512) | ||
int_w_output = pseudo_quantize_tensor(fp16_output)[0] | ||
test_result = test_loss_computation(fp16_output, int_w_output) | ||
|
||
inp = torch.randn(1000, 1000, 512) | ||
test_result = test_per_channel_mean(inp) |