Skip to content

Commit

Permalink
wip: Add Embedding of Typ
Browse files Browse the repository at this point in the history
  • Loading branch information
HeinrichApfelmus committed Aug 31, 2023
1 parent aaf6dee commit b574423
Show file tree
Hide file tree
Showing 3 changed files with 327 additions and 0 deletions.
2 changes: 2 additions & 0 deletions lib/fine-types/fine-types.cabal
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ library
, yaml
exposed-modules:
Language.FineTypes
Language.FineTypes.Embedding
Language.FineTypes.Export.OpenAPI.Typ
Language.FineTypes.Export.OpenAPI.Value
Language.FineTypes.Module
Expand Down Expand Up @@ -96,6 +97,7 @@ test-suite unit
main-is:
Spec.hs
other-modules:
Language.FineTypes.EmbeddingSpec
Language.FineTypes.Export.OpenAPI.TypSpec
Language.FineTypes.ParserSpec
Language.FineTypes.ValueSpec
256 changes: 256 additions & 0 deletions lib/fine-types/src/Language/FineTypes/Embedding.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
{-# OPTIONS_GHC -Wno-unrecognised-pragmas #-}
{-# HLINT ignore "Use lambda-case" #-}
module Language.FineTypes.Embedding where

import Prelude

import Control.Monad
((>=>))
import Language.FineTypes.Typ
( Typ )
import Language.FineTypes.Value

import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Language.FineTypes.Typ as Typ

{-----------------------------------------------------------------------------
Embedding
------------------------------------------------------------------------------}
-- | An 'Embedding' from a type A into a type B
-- is a many-to-one correspondence from the second type to the first.
--
-- > from . to = id
--
-- See Wadler's introduction to Agda
-- https://plfa.github.io/20.07/Isomorphism/#embedding
data Embedding a b = Embedding
{ to :: a -> b
, from :: b -> a
}

-- | An 'EmbeddingV' is a dynamically typed embedding of 'Value' into 'Value'.
--
-- Specifically, if @a `hasTyp` ta@ and @typecheck e ta == Just tb@,
-- then @to e a == b@ and @b `hasTyp tab@.
--
-- The result of @to e a@ can be 'undefined' if the value @a@ does
-- not have the expected 'Typ', that is @typecheck e ta == Nothing tb@.
data EmbeddingTyp = EmbeddingTyp
{ embed :: Embedding Value Value
-- ^ Embedding of 'Value's from one 'Typ' into the other.
, typecheck :: Typ -> Maybe Typ
-- ^ Check whether the 'Embedding' works on the given 'Typ'.
}

-- Design Question: Return the embedding as part of the type check?

{-----------------------------------------------------------------------------
Functorial operations
------------------------------------------------------------------------------}
-- | Composition of embeddings. Right-to-left.
--
-- > to (embed (ebc <> eab)) = to (embed ebc) . to (embed eab)
instance Semigroup EmbeddingTyp where
ebc <> eab = EmbeddingTyp
{ embed = Embedding
{ to = to (embed ebc) . to (embed eab)
, from = from (embed eab) . from (embed ebc)
}
, typecheck = typecheck eab >=> typecheck ebc
}

instance Monoid EmbeddingTyp where
mempty = EmbeddingTyp
{ embed = Embedding { to = id, from = id }
, typecheck = Just
}

-- | Operate on the argument of an unary operation.
map1 :: EmbeddingTyp -> EmbeddingTyp
map1 ee = EmbeddingTyp
{ embed = Embedding
{ to = \a -> case a of
One x -> One (fmap' (to e) x)
_ -> error "Typ(e) error in: map1, to"
, from = \b -> case b of
One x -> One (fmap' (from e) x)
_ -> error "Typ(e) error in: map1, from"
}
, typecheck = \t -> case t of
Typ.One op a -> Typ.One op <$> typecheck ee a
_ -> Nothing
}
where
e = embed ee

fmap' :: (Value -> Value) -> OneF Value -> OneF Value
fmap' f (Option a) = Option (f <$> a)
fmap' f (Sequence a) = Sequence (f <$> a)
fmap' f (PowerSet a) = PowerSet (Set.map f a)


-- | Operate on the first argument of a 'Product' or 'Sum'.
first' :: EmbeddingTyp -> EmbeddingTyp
first' ee = EmbeddingTyp
{ embed = Embedding
{ to = \a -> case a of
Product [x,y] -> Product [to e x, y]
Sum 0 x -> Sum 0 $ to e x
Sum 1 _ -> a
_ -> error "Typ(e) error in: first', to"
, from = \b -> case b of
Product [x2,y2] -> Product [from e x2, y2]
Sum 0 x2 -> Sum 0 $ from e x2
Sum 1 _ -> b
_ -> error "Typ(e) error in: first', from"
}
, typecheck = \t -> case t of
Typ.Two fun a0 b
| fun == Typ.Sum2 || fun == Typ.Product2
-> (\a1 -> Typ.Two fun a1 b) <$> typecheck ee a0
_ -> Nothing
}
where
e = embed ee

-- | Operate on the first argument of a 'Product' or 'Sum'.
second' :: EmbeddingTyp -> EmbeddingTyp
second' ee = EmbeddingTyp
{ embed = Embedding
{ to = \a -> case a of
Product [x,y] -> Product [x, to e y]
Sum 0 _ -> a
Sum 1 y -> Sum 1 $ to e y
_ -> error "Typ(e) error in: second', to"
, from = \b -> case b of
Product [x2, y2] -> Product [x2, from e y2]
Sum 0 _ -> b
Sum 1 y2 -> Sum 1 $ from e y2
_ -> error "Typ(e) error in: second', from"
}
, typecheck = \t -> case t of
Typ.Two fun a b0
| fun == Typ.Sum2 || fun == Typ.Product2
-> Typ.Two fun a <$> typecheck ee b0
_ -> Nothing
}
where
e = embed ee

-- | Associative law for products.
--
-- > (A × B) × C => A × (B × C)
assocR :: EmbeddingTyp
assocR = EmbeddingTyp
{ embed = Embedding
{ to = \t -> case t of
Product [Product [a,b],c] -> Product [a, Product [b,c]]
_ -> error "Typ(e) error in: assocR, to"
, from = \t -> case t of
Product [a, Product [b,c]] -> Product [Product [a,b],c]
_ -> error "Typ(e) error in: assocR, from"
}
, typecheck = \t -> case t of
Typ.Two Typ.Product2 (Typ.Two Typ.Product2 a b) c
-> Just $ Typ.Two Typ.Product2 a (Typ.Two Typ.Product2 b c)
_ -> Nothing
}

{-----------------------------------------------------------------------------
Basic algebra
------------------------------------------------------------------------------}
-- | Unit law for a monoid.
--
-- > () ↦0 A => A
unit0 :: Value -> EmbeddingTyp
unit0 zero = EmbeddingTyp
{ embed = Embedding
{ to = \a -> case a of
Two (FiniteMap m)
-> Map.findWithDefault zero (Zero Unit) m
_ -> error "Typ(e) error in: unit0, to"
, from =
Two . FiniteMap . Map.singleton (Zero Unit)
}
, typecheck = \t -> case t of
Typ.Two Typ.FiniteSupport (Typ.Zero Typ.Unit) s -> Just s
_ -> Nothing
}

-- | Exponential law(s)
--
-- > (A ⊎ B) ↦0 C => (A ↦0 C) × (B ↦0 C)
-- > (A ⊎ B) ↦ C => (A ↦ C) × (B ↦ C)
exponential :: EmbeddingTyp
exponential = EmbeddingTyp
{ embed = Embedding
{ to = \a -> case a of
Two (FiniteMap m) ->
Product
[ Two $ FiniteMap (left m)
, Two $ FiniteMap (right m)
]
_ -> error "Typ(e) error in: exponential, to"
, from = \b -> case b of
Product
[ Two (FiniteMap ml)
, Two (FiniteMap mr)
]
-> Two $ FiniteMap (plus ml mr)
_ -> error "Typ(e) error in: exponential, from"
}
, typecheck = \t -> case t of
Typ.Two fun (Typ.Two Typ.Sum2 a b) c
| fun == Typ.FiniteSupport || fun == Typ.PartialFunction
-> Just $ Typ.Two Typ.Product2 (Typ.Two fun a c) (Typ.Two fun b c)
_ -> Nothing
}
where
plus ml mr
= Map.mapKeys (Sum 0) ml <> Map.mapKeys (Sum 1) mr

left = withKeys matchLeft
right = withKeys matchRight

withKeys f
= Map.mapKeys fromSum
. Map.mapMaybeWithKey f

fromSum (Sum _ x) = x
fromSum _ = error "exponential: expected Sum"

matchLeft (Sum 0 _) v = Just v
matchLeft _ _ = Nothing

matchRight (Sum 1 _) v = Just v
matchRight _ _ = Nothing

{-----------------------------------------------------------------------------
Conversions
------------------------------------------------------------------------------}
-- | Representation of finite maps as sequences of pairs.
--
-- > A ↦ B => (A × B)*
-- > A ↦0 B => (A × B)*
representMap :: EmbeddingTyp
representMap = EmbeddingTyp
{ embed = Embedding
{ to = \a -> case a of
Two (FiniteMap m) -> valueFromList (Map.toList m)
_ -> error "Typ(e) error in: representMap, to"
, from = \b -> case b of
One (Sequence xs) ->
Two $ FiniteMap
$ Map.fromList [ (x,y) | Product [x,y] <- xs ]
_ -> error "Typ(e) error in: representMap, from"
}
, typecheck = \t -> case t of
Typ.Two Typ.PartialFunction a b
-> Just $ Typ.One Typ.Sequence (Typ.Two Typ.Product2 a b)
Typ.Two Typ.FiniteSupport a b
-> Just $ Typ.One Typ.Sequence (Typ.Two Typ.Product2 a b)
_ -> Nothing
}
where
valueFromList = One . Sequence . map (\(a,b) -> Product [a,b])
69 changes: 69 additions & 0 deletions lib/fine-types/test/Language/FineTypes/EmbeddingSpec.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
module Language.FineTypes.EmbeddingSpec
( spec
) where

import Prelude

import Language.FineTypes.Embedding
( assocR
, exponential
, first'
, map1
, representMap
, second'
, typecheck
, unit0
)
import Language.FineTypes.Module
( Module (..), resolveVars )
import Language.FineTypes.Parser
( parseFineTypes )
import Language.FineTypes.Typ
( OpTwo (..), TypName, Typ (..), everywhere )
import Test.Hspec
( Spec
, describe
, it
, shouldBe
)

import qualified Data.Map as Map
import qualified Language.FineTypes.Value as Value

{-----------------------------------------------------------------------------
Tests
------------------------------------------------------------------------------}
spec :: Spec
spec = do
describe "Embedding" $ do
it "works on UTxO types" $ do
Just hs <- parseFineTypes <$> readFile "test/data/HaskellUTxO.fine"
Just js <- parseFineTypes <$> readFile "test/data/JsonUTxO.fine"

let hsValue = forgetNames $ resolve hs "Value"
jsValue = forgetNames $ resolve js "Value"

zero = Value.Zero (Value.Integer 0)
emb = second' (map1 assocR <> representMap)
<> first' (unit0 zero)
<> exponential

typecheck emb hsValue `shouldBe` Just jsValue

-- | Resolve the 'Typ' corresponding to a name.
-- The result will not contain 'Var'.
resolve :: Module -> TypName -> Typ
resolve m name = resolveVars declarations typ
where
typ = declarations Map.! name
declarations = moduleDeclarations m

-- | Forget all field and constructor names.
forgetNames :: Typ -> Typ
forgetNames = everywhere forget
where
forget (ProductN nas@(_:_)) =
foldr (Two Product2 . snd) (snd $ last nas) (init nas)
forget (SumN nas@(_:_)) =
foldr (Two Sum2 . snd) (snd $ last nas) (init nas)
forget x = x

0 comments on commit b574423

Please sign in to comment.