-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4e8c75a
commit 16bee44
Showing
3 changed files
with
327 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
{-# OPTIONS_GHC -Wno-unrecognised-pragmas #-} | ||
{-# HLINT ignore "Use lambda-case" #-} | ||
module Language.FineTypes.Embedding where | ||
|
||
import Prelude | ||
|
||
import Control.Monad | ||
((>=>)) | ||
import Language.FineTypes.Typ | ||
( Typ ) | ||
import Language.FineTypes.Value | ||
|
||
import qualified Data.Map as Map | ||
import qualified Data.Set as Set | ||
import qualified Language.FineTypes.Typ as Typ | ||
|
||
{----------------------------------------------------------------------------- | ||
Embedding | ||
------------------------------------------------------------------------------} | ||
-- | An 'Embedding' from a type A into a type B | ||
-- is a many-to-one correspondence from the second type to the first. | ||
-- | ||
-- > from . to = id | ||
-- | ||
-- See Wadler's introduction to Agda | ||
-- https://plfa.github.io/20.07/Isomorphism/#embedding | ||
data Embedding a b = Embedding | ||
{ to :: a -> b | ||
, from :: b -> a | ||
} | ||
|
||
-- | An 'EmbeddingV' is a dynamically typed embedding of 'Value' into 'Value'. | ||
-- | ||
-- Specifically, if @a `hasTyp` ta@ and @typecheck e ta == Just tb@, | ||
-- then @to e a == b@ and @b `hasTyp tab@. | ||
-- | ||
-- The result of @to e a@ can be 'undefined' if the value @a@ does | ||
-- not have the expected 'Typ', that is @typecheck e ta == Nothing tb@. | ||
data EmbeddingTyp = EmbeddingTyp | ||
{ embed :: Embedding Value Value | ||
-- ^ Embedding of 'Value's from one 'Typ' into the other. | ||
, typecheck :: Typ -> Maybe Typ | ||
-- ^ Check whether the 'Embedding' works on the given 'Typ'. | ||
} | ||
|
||
-- Design Question: Return the embedding as part of the type check? | ||
|
||
{----------------------------------------------------------------------------- | ||
Functorial operations | ||
------------------------------------------------------------------------------} | ||
-- | Composition of embeddings. Right-to-left. | ||
-- | ||
-- > to (embed (ebc <> eab)) = to (embed ebc) . to (embed eab) | ||
instance Semigroup EmbeddingTyp where | ||
ebc <> eab = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = to (embed ebc) . to (embed eab) | ||
, from = from (embed eab) . from (embed ebc) | ||
} | ||
, typecheck = typecheck eab >=> typecheck ebc | ||
} | ||
|
||
instance Monoid EmbeddingTyp where | ||
mempty = EmbeddingTyp | ||
{ embed = Embedding { to = id, from = id } | ||
, typecheck = Just | ||
} | ||
|
||
-- | Operate on the argument of an unary operation. | ||
map1 :: EmbeddingTyp -> EmbeddingTyp | ||
map1 ee = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \a -> case a of | ||
One x -> One (fmap' (to e) x) | ||
_ -> error "Typ(e) error in: map1, to" | ||
, from = \b -> case b of | ||
One x -> One (fmap' (from e) x) | ||
_ -> error "Typ(e) error in: map1, from" | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.One op a -> Typ.One op <$> typecheck ee a | ||
_ -> Nothing | ||
} | ||
where | ||
e = embed ee | ||
|
||
fmap' :: (Value -> Value) -> OneF Value -> OneF Value | ||
fmap' f (Option a) = Option (f <$> a) | ||
fmap' f (Sequence a) = Sequence (f <$> a) | ||
fmap' f (PowerSet a) = PowerSet (Set.map f a) | ||
|
||
|
||
-- | Operate on the first argument of a 'Product' or 'Sum'. | ||
first' :: EmbeddingTyp -> EmbeddingTyp | ||
first' ee = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \a -> case a of | ||
Product [x,y] -> Product [to e x, y] | ||
Sum 0 x -> Sum 0 $ to e x | ||
Sum 1 _ -> a | ||
_ -> error "Typ(e) error in: first', to" | ||
, from = \b -> case b of | ||
Product [x2,y2] -> Product [from e x2, y2] | ||
Sum 0 x2 -> Sum 0 $ from e x2 | ||
Sum 1 _ -> b | ||
_ -> error "Typ(e) error in: first', from" | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.Two fun a0 b | ||
| fun == Typ.Sum2 || fun == Typ.Product2 | ||
-> (\a1 -> Typ.Two fun a1 b) <$> typecheck ee a0 | ||
_ -> Nothing | ||
} | ||
where | ||
e = embed ee | ||
|
||
-- | Operate on the first argument of a 'Product' or 'Sum'. | ||
second' :: EmbeddingTyp -> EmbeddingTyp | ||
second' ee = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \a -> case a of | ||
Product [x,y] -> Product [x, to e y] | ||
Sum 0 _ -> a | ||
Sum 1 y -> Sum 1 $ to e y | ||
_ -> error "Typ(e) error in: second', to" | ||
, from = \b -> case b of | ||
Product [x2, y2] -> Product [x2, from e y2] | ||
Sum 0 _ -> b | ||
Sum 1 y2 -> Sum 1 $ from e y2 | ||
_ -> error "Typ(e) error in: second', from" | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.Two fun a b0 | ||
| fun == Typ.Sum2 || fun == Typ.Product2 | ||
-> Typ.Two fun a <$> typecheck ee b0 | ||
_ -> Nothing | ||
} | ||
where | ||
e = embed ee | ||
|
||
-- | Associative law for products. | ||
-- | ||
-- > (A × B) × C => A × (B × C) | ||
assocR :: EmbeddingTyp | ||
assocR = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \t -> case t of | ||
Product [Product [a,b],c] -> Product [a, Product [b,c]] | ||
_ -> error "Typ(e) error in: assocR, to" | ||
, from = \t -> case t of | ||
Product [a, Product [b,c]] -> Product [Product [a,b],c] | ||
_ -> error "Typ(e) error in: assocR, from" | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.Two Typ.Product2 (Typ.Two Typ.Product2 a b) c | ||
-> Just $ Typ.Two Typ.Product2 a (Typ.Two Typ.Product2 b c) | ||
_ -> Nothing | ||
} | ||
|
||
{----------------------------------------------------------------------------- | ||
Basic algebra | ||
------------------------------------------------------------------------------} | ||
-- | Unit law for a monoid. | ||
-- | ||
-- > () ↦0 A => A | ||
unit0 :: Value -> EmbeddingTyp | ||
unit0 zero = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \a -> case a of | ||
Two (FiniteMap m) | ||
-> Map.findWithDefault zero (Zero Unit) m | ||
_ -> error "Typ(e) error in: unit0, to" | ||
, from = | ||
Two . FiniteMap . Map.singleton (Zero Unit) | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.Two Typ.FiniteSupport (Typ.Zero Typ.Unit) s -> Just s | ||
_ -> Nothing | ||
} | ||
|
||
-- | Exponential law(s) | ||
-- | ||
-- > (A ⊎ B) ↦0 C => (A ↦0 C) × (B ↦0 C) | ||
-- > (A ⊎ B) ↦ C => (A ↦ C) × (B ↦ C) | ||
exponential :: EmbeddingTyp | ||
exponential = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \a -> case a of | ||
Two (FiniteMap m) -> | ||
Product | ||
[ Two $ FiniteMap (left m) | ||
, Two $ FiniteMap (right m) | ||
] | ||
_ -> error "Typ(e) error in: exponential, to" | ||
, from = \b -> case b of | ||
Product | ||
[ Two (FiniteMap ml) | ||
, Two (FiniteMap mr) | ||
] | ||
-> Two $ FiniteMap (plus ml mr) | ||
_ -> error "Typ(e) error in: exponential, from" | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.Two fun (Typ.Two Typ.Sum2 a b) c | ||
| fun == Typ.FiniteSupport || fun == Typ.PartialFunction | ||
-> Just $ Typ.Two Typ.Product2 (Typ.Two fun a c) (Typ.Two fun b c) | ||
_ -> Nothing | ||
} | ||
where | ||
plus ml mr | ||
= Map.mapKeys (Sum 0) ml <> Map.mapKeys (Sum 1) mr | ||
|
||
left = withKeys matchLeft | ||
right = withKeys matchRight | ||
|
||
withKeys f | ||
= Map.mapKeys fromSum | ||
. Map.mapMaybeWithKey f | ||
|
||
fromSum (Sum _ x) = x | ||
fromSum _ = error "exponential: expected Sum" | ||
|
||
matchLeft (Sum 0 _) v = Just v | ||
matchLeft _ _ = Nothing | ||
|
||
matchRight (Sum 1 _) v = Just v | ||
matchRight _ _ = Nothing | ||
|
||
{----------------------------------------------------------------------------- | ||
Conversions | ||
------------------------------------------------------------------------------} | ||
-- | Representation of finite maps as sequences of pairs. | ||
-- | ||
-- > A ↦ B => (A × B)* | ||
-- > A ↦0 B => (A × B)* | ||
representMap :: EmbeddingTyp | ||
representMap = EmbeddingTyp | ||
{ embed = Embedding | ||
{ to = \a -> case a of | ||
Two (FiniteMap m) -> valueFromList (Map.toList m) | ||
_ -> error "Typ(e) error in: representMap, to" | ||
, from = \b -> case b of | ||
One (Sequence xs) -> | ||
Two $ FiniteMap | ||
$ Map.fromList [ (x,y) | Product [x,y] <- xs ] | ||
_ -> error "Typ(e) error in: representMap, from" | ||
} | ||
, typecheck = \t -> case t of | ||
Typ.Two Typ.PartialFunction a b | ||
-> Just $ Typ.One Typ.Sequence (Typ.Two Typ.Product2 a b) | ||
Typ.Two Typ.FiniteSupport a b | ||
-> Just $ Typ.One Typ.Sequence (Typ.Two Typ.Product2 a b) | ||
_ -> Nothing | ||
} | ||
where | ||
valueFromList = One . Sequence . map (\(a,b) -> Product [a,b]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
module Language.FineTypes.EmbeddingSpec | ||
( spec | ||
) where | ||
|
||
import Prelude | ||
|
||
import Language.FineTypes.Embedding | ||
( assocR | ||
, exponential | ||
, first' | ||
, map1 | ||
, representMap | ||
, second' | ||
, typecheck | ||
, unit0 | ||
) | ||
import Language.FineTypes.Module | ||
( Module (..), resolveVars ) | ||
import Language.FineTypes.Parser | ||
( parseFineTypes ) | ||
import Language.FineTypes.Typ | ||
( OpTwo (..), TypName, Typ (..), everywhere ) | ||
import Test.Hspec | ||
( Spec | ||
, describe | ||
, it | ||
, shouldBe | ||
) | ||
|
||
import qualified Data.Map as Map | ||
import qualified Language.FineTypes.Value as Value | ||
|
||
{----------------------------------------------------------------------------- | ||
Tests | ||
------------------------------------------------------------------------------} | ||
spec :: Spec | ||
spec = do | ||
describe "Embedding" $ do | ||
it "works on UTxO types" $ do | ||
Just hs <- parseFineTypes <$> readFile "test/data/HaskellUTxO.fine" | ||
Just js <- parseFineTypes <$> readFile "test/data/JsonUTxO.fine" | ||
|
||
let hsValue = forgetNames $ resolve hs "Value" | ||
jsValue = forgetNames $ resolve js "Value" | ||
|
||
zero = Value.Zero (Value.Integer 0) | ||
emb = second' (map1 assocR <> representMap) | ||
<> first' (unit0 zero) | ||
<> exponential | ||
|
||
typecheck emb hsValue `shouldBe` Just jsValue | ||
|
||
-- | Resolve the 'Typ' corresponding to a name. | ||
-- The result will not contain 'Var'. | ||
resolve :: Module -> TypName -> Typ | ||
resolve m name = resolveVars declarations typ | ||
where | ||
typ = declarations Map.! name | ||
declarations = moduleDeclarations m | ||
|
||
-- | Forget all field and constructor names. | ||
forgetNames :: Typ -> Typ | ||
forgetNames = everywhere forget | ||
where | ||
forget (ProductN nas@(_:_)) = | ||
foldr (Two Product2 . snd) (snd $ last nas) (init nas) | ||
forget (SumN nas@(_:_)) = | ||
foldr (Two Sum2 . snd) (snd $ last nas) (init nas) | ||
forget x = x |