-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
DPE-2656 Profile limite memory config support (#283)
* first pass * the mandatory libpatch bump * fix bad c-c c-v * prettier assignment * exporting requirements without hashes * revert pydantic bump
- Loading branch information
Showing
9 changed files
with
500 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,354 @@ | ||
# Copyright 2023 Canonical Ltd. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r"""Library to provide simple API for promoting typed, validated and structured dataclass in charms. | ||
Dict-like data structure are often used in charms. They are used for config, action parameters | ||
and databag. This library aims at providing simple API for using pydantic BaseModel-derived class | ||
in charms, in order to enhance: | ||
* Validation, by embedding custom business logic to validate single parameters or even have | ||
validators that acts across different fields | ||
* Parsing, by loading data into pydantic object we can both allow for other types (e.g. float) to | ||
be used in configuration/parameters as well as specify even nested complex objects for databags | ||
* Static typing checks, by moving from dict-like object to classes with typed-annotated properties, | ||
that can be statically checked using mypy to ensure that the code is correct. | ||
Pydantic models can be used on: | ||
* Charm Configuration (as defined in config.yaml) | ||
* Actions parameters (as defined in actions.yaml) | ||
* Application/Unit Databag Information (thus making it more structured and encoded) | ||
## Creating models | ||
Any data-structure can be modeled using dataclasses instead of dict-like objects (e.g. storing | ||
config, action parameters and databags). Within pydantic, we can define dataclasses that provides | ||
also parsing and validation on standard dataclass implementation: | ||
```python | ||
from charms.data_platform_libs.v0.data_models import BaseConfigModel | ||
class MyConfig(BaseConfigModel): | ||
my_key: int | ||
@validator("my_key") | ||
def is_lower_than_100(cls, v: int): | ||
if v > 100: | ||
raise ValueError("Too high") | ||
``` | ||
This should allow to collapse both parsing and validation as the dataclass object is parsed and | ||
created: | ||
```python | ||
dataclass = MyConfig(my_key="1") | ||
dataclass.my_key # this returns 1 (int) | ||
dataclass["my_key"] # this returns 1 (int) | ||
dataclass = MyConfig(my_key="102") # this returns a ValueError("Too High") | ||
``` | ||
## Charm Configuration Model | ||
Using the class above, we can implement parsing and validation of configuration by simply | ||
extending our charms using the `TypedCharmBase` class, as shown below. | ||
```python | ||
class MyCharm(TypedCharmBase[MyConfig]): | ||
config_type = MyConfig | ||
# everywhere in the code you will have config property already parsed and validate | ||
def my_method(self): | ||
self.config: MyConfig | ||
``` | ||
## Action parameters | ||
In order to parse action parameters, we can use a decorator to be applied to action event | ||
callbacks, as shown below. | ||
```python | ||
@validate_params(PullActionModel) | ||
def _pull_site_action( | ||
self, event: ActionEvent, | ||
params: Optional[Union[PullActionModel, ValidationError]] = None | ||
): | ||
if isinstance(params, ValidationError): | ||
# handle errors | ||
else: | ||
# do stuff | ||
``` | ||
Note that this changes the signature of the callbacks by adding an extra parameter with the parsed | ||
counterpart of the `event.params` dict-like field. If validation fails, we return (not throw!) the | ||
exception, to be handled (or raised) in the callback. | ||
## Databag | ||
In order to parse databag fields, we define a decorator to be applied to base relation event | ||
callbacks. | ||
```python | ||
@parse_relation_data(app_model=AppDataModel, unit_model=UnitDataModel) | ||
def _on_cluster_relation_joined( | ||
self, event: RelationEvent, | ||
app_data: Optional[Union[AppDataModel, ValidationError]] = None, | ||
unit_data: Optional[Union[UnitDataModel, ValidationError]] = None | ||
) -> None: | ||
... | ||
``` | ||
The parameters `app_data` and `unit_data` refers to the databag of the entity which fired the | ||
RelationEvent. | ||
When we want to access to a relation databag outsides of an action, it can be useful also to | ||
compact multiple databags into a single object (if there are no conflicting fields), e.g. | ||
```python | ||
class ProviderDataBag(BaseClass): | ||
provider_key: str | ||
class RequirerDataBag(BaseClass): | ||
requirer_key: str | ||
class MergedDataBag(ProviderDataBag, RequirerDataBag): | ||
pass | ||
merged_data = get_relation_data_as( | ||
MergedDataBag, relation.data[self.app], relation.data[relation.app] | ||
) | ||
merged_data.requirer_key | ||
merged_data.provider_key | ||
``` | ||
The above code can be generalized to other kinds of merged objects, e.g. application and unit, and | ||
it can be extended to multiple sources beyond 2: | ||
```python | ||
merged_data = get_relation_data_as( | ||
MergedDataBag, relation.data[self.app], relation.data[relation.app], ... | ||
) | ||
``` | ||
""" | ||
|
||
import json | ||
from functools import reduce, wraps | ||
from typing import Callable, Generic, MutableMapping, Optional, Type, TypeVar, Union | ||
|
||
import pydantic | ||
from ops.charm import ActionEvent, CharmBase, RelationEvent | ||
from ops.model import RelationDataContent | ||
from pydantic import BaseModel, ValidationError | ||
|
||
# The unique Charmhub library identifier, never change it | ||
LIBID = "cb2094c5b07d47e1bf346aaee0fcfcfe" | ||
|
||
# Increment this major API version when introducing breaking changes | ||
LIBAPI = 0 | ||
|
||
# Increment this PATCH version before using `charmcraft publish-lib` or reset | ||
# to 0 if you are raising the major API version | ||
LIBPATCH = 4 | ||
|
||
PYDEPS = ["ops>=2.0.0", "pydantic>=1.10,<2"] | ||
|
||
G = TypeVar("G") | ||
T = TypeVar("T", bound=BaseModel) | ||
AppModel = TypeVar("AppModel", bound=BaseModel) | ||
UnitModel = TypeVar("UnitModel", bound=BaseModel) | ||
|
||
DataBagNativeTypes = (int, str, float) | ||
|
||
|
||
class BaseConfigModel(BaseModel): | ||
"""Class to be used for defining the structured configuration options.""" | ||
|
||
def __getitem__(self, x): | ||
"""Return the item using the notation instance[key].""" | ||
return getattr(self, x.replace("-", "_")) | ||
|
||
|
||
class TypedCharmBase(CharmBase, Generic[T]): | ||
"""Class to be used for extending config-typed charms.""" | ||
|
||
config_type: Type[T] | ||
|
||
@property | ||
def config(self) -> T: | ||
"""Return a config instance validated and parsed using the provided pydantic class.""" | ||
translated_keys = {k.replace("-", "_"): v for k, v in self.model.config.items()} | ||
return self.config_type(**translated_keys) | ||
|
||
|
||
def validate_params(cls: Type[T]): | ||
"""Return a decorator to allow pydantic parsing of action parameters. | ||
Args: | ||
cls: Pydantic class representing the model to be used for parsing the content of the | ||
action parameter | ||
""" | ||
|
||
def decorator( | ||
f: Callable[[CharmBase, ActionEvent, Union[T, ValidationError]], G] | ||
) -> Callable[[CharmBase, ActionEvent], G]: | ||
@wraps(f) | ||
def event_wrapper(self: CharmBase, event: ActionEvent): | ||
try: | ||
params = cls( | ||
**{key.replace("-", "_"): value for key, value in event.params.items()} | ||
) | ||
except ValidationError as e: | ||
params = e | ||
return f(self, event, params) | ||
|
||
return event_wrapper | ||
|
||
return decorator | ||
|
||
|
||
def write(relation_data: RelationDataContent, model: BaseModel): | ||
"""Write the data contained in a domain object to the relation databag. | ||
Args: | ||
relation_data: pointer to the relation databag | ||
model: instance of pydantic model to be written | ||
""" | ||
for key, value in model.dict(exclude_none=False).items(): | ||
if value: | ||
relation_data[key.replace("_", "-")] = ( | ||
str(value) | ||
if any(isinstance(value, _type) for _type in DataBagNativeTypes) | ||
else json.dumps(value) | ||
) | ||
else: | ||
relation_data[key.replace("_", "-")] = "" | ||
|
||
|
||
def read(relation_data: MutableMapping[str, str], obj: Type[T]) -> T: | ||
"""Read data from a relation databag and parse it into a domain object. | ||
Args: | ||
relation_data: pointer to the relation databag | ||
obj: pydantic class representing the model to be used for parsing | ||
""" | ||
return obj( | ||
**{ | ||
field_name: ( | ||
relation_data[parsed_key] | ||
if field.outer_type_ in DataBagNativeTypes | ||
else json.loads(relation_data[parsed_key]) | ||
) | ||
for field_name, field in obj.__fields__.items() | ||
# pyright: ignore[reportGeneralTypeIssues] | ||
if (parsed_key := field_name.replace("_", "-")) in relation_data | ||
if relation_data[parsed_key] | ||
} | ||
) | ||
|
||
|
||
def parse_relation_data( | ||
app_model: Optional[Type[AppModel]] = None, unit_model: Optional[Type[UnitModel]] = None | ||
): | ||
"""Return a decorator to allow pydantic parsing of the app and unit databags. | ||
Args: | ||
app_model: Pydantic class representing the model to be used for parsing the content of the | ||
app databag. None if no parsing ought to be done. | ||
unit_model: Pydantic class representing the model to be used for parsing the content of the | ||
unit databag. None if no parsing ought to be done. | ||
""" | ||
|
||
def decorator( | ||
f: Callable[ | ||
[ | ||
CharmBase, | ||
RelationEvent, | ||
Optional[Union[AppModel, ValidationError]], | ||
Optional[Union[UnitModel, ValidationError]], | ||
], | ||
G, | ||
] | ||
) -> Callable[[CharmBase, RelationEvent], G]: | ||
@wraps(f) | ||
def event_wrapper(self: CharmBase, event: RelationEvent): | ||
try: | ||
app_data = ( | ||
read(event.relation.data[event.app], app_model) | ||
if app_model is not None and event.app | ||
else None | ||
) | ||
except pydantic.ValidationError as e: | ||
app_data = e | ||
|
||
try: | ||
unit_data = ( | ||
read(event.relation.data[event.unit], unit_model) | ||
if unit_model is not None and event.unit | ||
else None | ||
) | ||
except pydantic.ValidationError as e: | ||
unit_data = e | ||
|
||
return f(self, event, app_data, unit_data) | ||
|
||
return event_wrapper | ||
|
||
return decorator | ||
|
||
|
||
class RelationDataModel(BaseModel): | ||
"""Base class to be used for creating data models to be used for relation databags.""" | ||
|
||
def write(self, relation_data: RelationDataContent): | ||
"""Write data to a relation databag. | ||
Args: | ||
relation_data: pointer to the relation databag | ||
""" | ||
return write(relation_data, self) | ||
|
||
@classmethod | ||
def read(cls, relation_data: RelationDataContent) -> "RelationDataModel": | ||
"""Read data from a relation databag and parse it as an instance of the pydantic class. | ||
Args: | ||
relation_data: pointer to the relation databag | ||
""" | ||
return read(relation_data, cls) | ||
|
||
|
||
def get_relation_data_as( | ||
model_type: Type[AppModel], | ||
*relation_data: RelationDataContent, | ||
) -> Union[AppModel, ValidationError]: | ||
"""Return a merged representation of the provider and requirer databag into a single object. | ||
Args: | ||
model_type: pydantic class representing the merged databag | ||
relation_data: list of RelationDataContent of provider/requirer/unit sides | ||
""" | ||
try: | ||
app_data = read(reduce(lambda x, y: dict(x) | dict(y), relation_data, {}), model_type) | ||
except pydantic.ValidationError as e: | ||
app_data = e | ||
return app_data |
Oops, something went wrong.