Skip to content

This repository is a replication of Deep Shading: CNNs for Screen Space Shading paper.

Notifications You must be signed in to change notification settings

caganselim/DeepShading

Repository files navigation

Deep Shading: Convolutional Neural Networks for Screen Space Shading

This repository is a replication of the following paper Deep Shading: Convolutional Neural Networks for Screen Space Shading

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, Tobias Ritschel Deep Shading: Convolutional Neural Networks for Screen-Space Shading to appear in Proc. EGSR 2017

For the SSIM loss, this implementation is used: https://github.com/jorge-pessoa/pytorch-msssim. Each experiment is in the form of a Jupyter Notebook.

Abstract

In computer vision, convolutional neural networks (CNNs) achieve unprecedented performance for inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen space shading has boosted the quality of real-time rendering, converting the same kind of attributes of a virtual scene back to appearance, enabling effects like ambient occlusion, indirect light, scattering and many more. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading renders screen space effects at competitive quality and speed while not being programmed by human experts but learned from example images.

Models

You can access the trained models here: Google Drive

AO DO DoF AO + DoF MB
Test SSIM 0.9215 0.9096 0.9567 0.9564 0.9715
  • AO: Ambient Occlusion
  • DO: Directional Occlusion
  • DoF: Depth of Field
  • AO + DoF: Ambient Occlusion + Depth of Field
  • MB: Motion Blur

Dataset

The dataset was available (700GB) during the implementation, however the authors decided to restrict access. Here we have some visualizations:

AO

AO

DO

DO

DoF

DoF

AO + DoF

AODoF

MB

MB

Requirements

I haven't exported a requirements.txt file, but the following setup should be sufficient:

  • PyTorch 1.6.0
  • PIL
  • Matplotlib
  • pyexr

About

This repository is a replication of Deep Shading: CNNs for Screen Space Shading paper.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published