Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

btcec: Avoid panic in fieldVal.SetByteSlice for large inputs #1602

Merged
merged 1 commit into from
Jul 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 12 additions & 8 deletions btcec/field.go
Original file line number Diff line number Diff line change
Expand Up @@ -226,20 +226,24 @@ func (f *fieldVal) SetBytes(b *[32]byte) *fieldVal {
return f
}

// SetByteSlice packs the passed big-endian value into the internal field value
// representation. Only the first 32-bytes are used. As a result, it is up to
// the caller to ensure numbers of the appropriate size are used or the value
// will be truncated.
// SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned
// integer (meaning it is truncated to the first 32 bytes), packs it into the
// internal field value representation, and returns the updated field value.
//
// Note that since passing a slice with more than 32 bytes is truncated, it is
// possible that the truncated value is less than the field prime. It is up to
// the caller to decide whether it needs to provide numbers of the appropriate
// size or if it is acceptable to use this function with the described
// truncation behavior.
//
// The field value is returned to support chaining. This enables syntax like:
// f := new(fieldVal).SetByteSlice(byteSlice)
func (f *fieldVal) SetByteSlice(b []byte) *fieldVal {
var b32 [32]byte
for i := 0; i < len(b); i++ {
if i < 32 {
b32[i+(32-len(b))] = b[i]
}
if len(b) > 32 {
b = b[:32]
}
copy(b32[32-len(b):], b)
return f.SetBytes(&b32)
}

Expand Down
154 changes: 154 additions & 0 deletions btcec/field_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ package btcec

import (
"crypto/rand"
"encoding/hex"
"fmt"
"reflect"
"testing"
Expand Down Expand Up @@ -965,3 +966,156 @@ func testSqrt(t *testing.T, test sqrtTest) {
}
}
}

// TestFieldSetBytes ensures that setting a field value to a 256-bit big-endian
// unsigned integer via both the slice and array methods works as expected for
// edge cases. Random cases are tested via the various other tests.
func TestFieldSetBytes(t *testing.T) {
tests := []struct {
name string // test description
in string // hex encoded test value
expected [10]uint32 // expected raw ints
}{{
name: "zero",
in: "00",
expected: [10]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
}, {
name: "field prime",
in: "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f",
expected: [10]uint32{
0x03fffc2f, 0x03ffffbf, 0x03ffffff, 0x03ffffff, 0x03ffffff,
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff,
},
}, {
name: "field prime - 1",
in: "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
expected: [10]uint32{
0x03fffc2e, 0x03ffffbf, 0x03ffffff, 0x03ffffff, 0x03ffffff,
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff,
},
}, {
name: "field prime + 1 (overflow in word zero)",
in: "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc30",
expected: [10]uint32{
0x03fffc30, 0x03ffffbf, 0x03ffffff, 0x03ffffff, 0x03ffffff,
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff,
},
}, {
name: "field prime first 32 bits",
in: "fffffc2f",
expected: [10]uint32{
0x03fffc2f, 0x00000003f, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
},
}, {
name: "field prime word zero",
in: "03fffc2f",
expected: [10]uint32{
0x03fffc2f, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
},
}, {
name: "field prime first 64 bits",
in: "fffffffefffffc2f",
expected: [10]uint32{
0x03fffc2f, 0x03ffffbf, 0x00000fff, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
},
}, {
name: "field prime word zero and one",
in: "0ffffefffffc2f",
expected: [10]uint32{
0x03fffc2f, 0x03ffffbf, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
},
}, {
name: "field prime first 96 bits",
in: "fffffffffffffffefffffc2f",
expected: [10]uint32{
0x03fffc2f, 0x03ffffbf, 0x03ffffff, 0x0003ffff, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
},
}, {
name: "field prime word zero, one, and two",
in: "3ffffffffffefffffc2f",
expected: [10]uint32{
0x03fffc2f, 0x03ffffbf, 0x03ffffff, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
},
}, {
name: "overflow in word one (prime + 1<<26)",
in: "ffffffffffffffffffffffffffffffffffffffffffffffffffffffff03fffc2f",
expected: [10]uint32{
0x03fffc2f, 0x03ffffc0, 0x03ffffff, 0x03ffffff, 0x03ffffff,
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff,
},
}, {
name: "(field prime - 1) * 2 NOT mod P, truncated >32 bytes",
in: "01fffffffffffffffffffffffffffffffffffffffffffffffffffffffdfffff85c",
expected: [10]uint32{
0x01fffff8, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff,
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x00007fff,
},
}, {
name: "2^256 - 1",
in: "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
expected: [10]uint32{
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff,
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff,
},
}, {
name: "alternating bits",
in: "a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5",
expected: [10]uint32{
0x01a5a5a5, 0x01696969, 0x025a5a5a, 0x02969696, 0x01a5a5a5,
0x01696969, 0x025a5a5a, 0x02969696, 0x01a5a5a5, 0x00296969,
},
}, {
name: "alternating bits 2",
in: "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a",
expected: [10]uint32{
0x025a5a5a, 0x02969696, 0x01a5a5a5, 0x01696969, 0x025a5a5a,
0x02969696, 0x01a5a5a5, 0x01696969, 0x025a5a5a, 0x00169696,
},
}}

for _, test := range tests {
inBytes := hexToBytes(test.in)

// Ensure setting the bytes via the slice method works as expected.
var f fieldVal
f.SetByteSlice(inBytes)
if !reflect.DeepEqual(f.n, test.expected) {
t.Errorf("%s: unexpected result\ngot: %x\nwant: %x", test.name, f.n,
test.expected)
continue
}

// Ensure setting the bytes via the array method works as expected.
var f2 fieldVal
var b32 [32]byte
truncatedInBytes := inBytes
if len(truncatedInBytes) > 32 {
truncatedInBytes = truncatedInBytes[:32]
}
copy(b32[32-len(truncatedInBytes):], truncatedInBytes)
f2.SetBytes(&b32)
if !reflect.DeepEqual(f2.n, test.expected) {
t.Errorf("%s: unexpected result\ngot: %x\nwant: %x", test.name,
f2.n, test.expected)
continue
}
}
}

// hexToBytes converts the passed hex string into bytes and will panic if there
// is an error. This is only provided for the hard-coded constants so errors in
// the source code can be detected. It will only (and must only) be called with
// hard-coded values.
func hexToBytes(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic("invalid hex in source file: " + s)
}
return b
}