Skip to content

Commit

Permalink
rename to convexindep
Browse files Browse the repository at this point in the history
  • Loading branch information
JamesGallicchio committed Jun 5, 2024
1 parent 2e72785 commit 8a655d7
Show file tree
Hide file tree
Showing 7 changed files with 38 additions and 38 deletions.
2 changes: 1 addition & 1 deletion ITP/encoding.tex
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@
of points on either side of $\overleftrightarrow{ab}$.
That is:
\begin{lstlisting}
theorem split_convexHull (cvx : ConvexPoints S) :
theorem split_convexHull (cvx : ConvexIndep S) :
∀ {a b}, a ∈ S → b ∈ S →
convexHull ℝ S ⊆ convexHull ℝ {x ∈ S | σ a b x ≠ ccw}
∪ convexHull ℝ {x ∈ S | σ a b x ≠ cw}
Expand Down
2 changes: 1 addition & 1 deletion ITP/fig_triangulation.tex
Original file line number Diff line number Diff line change
Expand Up @@ -66,5 +66,5 @@
\end{tikzpicture}
\caption{}\label{fig:triangulation-b}
\end{subfigure}
\caption{Illustration of the proof for \lstinline|ConvexEmptyIn.iff_triangles|. The left subfigure shows how a point in $S \setminus s$ that lies inside $s$ will be inside one of the triangles induced by the convex hull of $s$ (orange triangle). The right subfigure shows how if the $\textsf{ConvexPoints}$ predicate does not hold of $s$, then some point $a \in s$ will be inside one of the triangles induced by the convex hull of $s \setminus \{a\}$.}\label{fig:triangulation}
\caption{Illustration of the proof for \lstinline|ConvexEmptyIn.iff_triangles|. The left subfigure shows how a point in $S \setminus s$ that lies inside $s$ will be inside one of the triangles induced by the convex hull of $s$ (orange triangle). The right subfigure shows how if the $\textsf{ConvexIndep}$ predicate does not hold of $s$, then some point $a \in s$ will be inside one of the triangles induced by the convex hull of $s \setminus \{a\}$.}\label{fig:triangulation}
\end{figure}
12 changes: 6 additions & 6 deletions ITP/geometry.tex
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,13 @@
def EmptyShapeIn (S P : Set Point) : Prop :=
∀ p ∈ P \ S, p ∉ convexHull ℝ S

/-- `ConvexPoints S' means that `S' consists of extremal points of its convex hull,
/-- `ConvexIndep S' means that `S' consists of extremal points of its convex hull,
i.e., the point set encloses a convex polygon. -/
def ConvexPoints (S : Set Point) : Prop :=
def ConvexIndep (S : Set Point) : Prop :=
∀ a ∈ S, a ∉ convexHull ℝ (S \ {a})

def ConvexEmptyIn (S P : Set Point) : Prop :=
ConvexPoints S ∧ EmptyShapeIn S P
ConvexIndep S ∧ EmptyShapeIn S P

def HasEmptyKGon (k : Nat) (S : Set Point) : Prop :=
∃ s : Finset Point, s.card = k ∧ ↑s ⊆ S ∧ ConvexEmptyIn s S
Expand All @@ -37,10 +37,10 @@
\end{lstlisting}
\input{fig_triangulation.tex}
\begin{proof}[Proof sketch]
We first prove a simple monotonicity lemma: if $\textsf{ConvexPoints}(s)$, then $\textsf{ConvexPoints}(s')$ for every $s' \subseteq s$, and similarly $\textsf{EmptyShapeIn}(s, S) \Rightarrow \textsf{EmptyShapeIn}(s', S)$ for every set of points $S$.
We first prove a simple monotonicity lemma: if $\textsf{ConvexIndep}(s)$, then $\textsf{ConvexIndep}(s')$ for every $s' \subseteq s$, and similarly $\textsf{EmptyShapeIn}(s, S) \Rightarrow \textsf{EmptyShapeIn}(s', S)$ for every set of points $S$.
By instantiating this monotonicity lemma over all subsets $t \subseteq s$ with $|t| = 3$ we get the forward direction of the theorem.
For the backward direction it is easier to reason contrapositively: if the~$\textsf{ConvexPoints}$ predicate does not hold of $s$, or if $s$ is not empty w.r.t.~$S$, then we want to show that there is a triangle $t \subseteq s$ that is also not empty w.r.t.~$S$. To see this, let $H$ be the convex hull of $s$, and then by Carath\'eodory's theorem (cf. \lstinline|theorem convexHull_eq_union| from \textsf{mathlib}), every point in $H$ is a convex combination of at most $3$ points in $s$, and consequently, of exactly $3$ points in $s$.
If $s$ is non-empty w.r.t.~$S$, then there is a point $p \in S \setminus s$ that belongs to $H$, and by Carath\'eodory, $p$ is a convex combination of $3$ points in $s \setminus \{a\}$, and thus lies inside a triangle $t \subseteq s$ (\Cref{fig:triangulation-a}). If $s$ does not hold $\textsf{ConvexPoints}$, then there is a point $a \in s$ such that $a \in \textsf{convexHull}(s \setminus \{a\})$, and by Carath\'eodory again, $a$ is a convex combination of $3$ points in $s$, and thus lies inside a triangle $t \subseteq s \setminus \{a\}$ (\Cref{fig:triangulation-b}).
For the backward direction it is easier to reason contrapositively: if the~$\textsf{ConvexIndep}$ predicate does not hold of $s$, or if $s$ is not empty w.r.t.~$S$, then we want to show that there is a triangle $t \subseteq s$ that is also not empty w.r.t.~$S$. To see this, let $H$ be the convex hull of $s$, and then by Carath\'eodory's theorem (cf. \lstinline|theorem convexHull_eq_union| from \textsf{mathlib}), every point in $H$ is a convex combination of at most $3$ points in $s$, and consequently, of exactly $3$ points in $s$.
If $s$ is non-empty w.r.t.~$S$, then there is a point $p \in S \setminus s$ that belongs to $H$, and by Carath\'eodory, $p$ is a convex combination of $3$ points in $s \setminus \{a\}$, and thus lies inside a triangle $t \subseteq s$ (\Cref{fig:triangulation-a}). If $s$ does not hold $\textsf{ConvexIndep}$, then there is a point $a \in s$ such that $a \in \textsf{convexHull}(s \setminus \{a\})$, and by Carath\'eodory again, $a$ is a convex combination of $3$ points in $s$, and thus lies inside a triangle $t \subseteq s \setminus \{a\}$ (\Cref{fig:triangulation-b}).
% The
% The forward direction is easy to see, as triangles are always convex, and if $s$ is empty w.r.t.~$S$, then so are the triangles induced by vertices of $s$.
% Let $T = \{t_1, \ldots, t_{{k \choose 3}}\}$ be all the triangles induced by vertices of $s$.
Expand Down
8 changes: 4 additions & 4 deletions Lean/Geo.lean
Original file line number Diff line number Diff line change
Expand Up @@ -14,16 +14,16 @@ other than those already in `S`. -/
recall Geo.EmptyShapeIn (S P : Set Point) : Prop :=
∀ p ∈ P \ S, p ∉ convexHull ℝ S

/- `ConvexPoints S` means that `S` consists of extremal points of its convex hull,
/- `ConvexIndep S` means that `S` consists of extremal points of its convex hull,
i.e. the point set encloses a convex polygon. Also known as a "convex-independent set". -/
recall Geo.ConvexPoints (S : Set Point) : Prop :=
recall Geo.ConvexIndep (S : Set Point) : Prop :=
∀ a ∈ S, a ∉ convexHull ℝ (S \ {a})

recall Geo.HasConvexKGon (n : Nat) (S : Set Point) : Prop :=
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexPoints s
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexIndep s

recall Geo.HasEmptyKGon (n : Nat) (S : Set Point) : Prop :=
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexPoints s ∧ EmptyShapeIn s S
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexIndep s ∧ EmptyShapeIn s S

/- `gonNumber k` is the smallest number `n` such that every set of `n` or more points
in general position contains a convex-independent set of size `k`. -/
Expand Down
4 changes: 2 additions & 2 deletions Lean/Geo/Definitions/OrientationProperties.lean
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ theorem σHasConvexKGon_iff_HasConvexKGon (gp : Point.ListInGenPos pts) :
unfold σHasConvexKGon HasConvexKGon
refine exists_congr fun s => and_congr_right' <| and_congr_right fun spts => ?_
have gp' := gp.toFinset
rw [ConvexPoints.iff_triangles'' (gp'.mono spts)]
rw [ConvexIndep.iff_triangles'' (gp'.mono spts)]
iterate 9 refine forall_congr' fun _ => ?_
rw [σIsEmptyTriangleFor_iff'' (gp'.mono spts)] <;> simp [EmptyShapeIn, PtInTriangle, *]

Expand Down Expand Up @@ -227,7 +227,7 @@ theorem σCCWPoints.cycle (H : σCCWPoints (l₁ ++ l₂)) : σCCWPoints (l₂ +
fun c hc => (H4 c hc).imp <| Eq.trans (by rw [σ_perm₁, ← σ_perm₂]),
fun a ha => (H3 a ha).imp <| Eq.trans (by rw [σ_perm₂, ← σ_perm₁])⟩

theorem σCCWPoints.convex (H : σCCWPoints l) : ConvexPoints l.toFinset := by
theorem σCCWPoints.convex (H : σCCWPoints l) : ConvexIndep l.toFinset := by
refine ((ConvexEmptyIn.iff_triangles'' subset_rfl H.gp).2 ?_).1
simp only [mem_toFinset, Finset.mem_sdiff, Finset.mem_insert, Finset.mem_singleton,
not_or, and_imp]
Expand Down
44 changes: 22 additions & 22 deletions Lean/Geo/Definitions/Structures.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,14 @@ theorem emptyShapeIn_congr_right {S : Set Point} (h : ∀ p ∉ S, p ∈ P₁
EmptyShapeIn S P₁ ↔ EmptyShapeIn S P₂ :=
forall_congr' fun _ => imp_congr_left <| and_congr_left (h _)

/-- `ConvexPoints S` means that `S` consists of extremal points of its convex hull,
/-- `ConvexIndep S` means that `S` consists of extremal points of its convex hull,
i.e. the point set encloses a convex polygon. Also known as a "convex-independent set". -/
def ConvexPoints (S : Set Point) : Prop :=
def ConvexIndep (S : Set Point) : Prop :=
∀ a ∈ S, a ∉ convexHull ℝ (S \ {a})

open Classical
theorem ConvexPoints.triangle_iff {a b c : Point} {h : [a, b, c].Nodup} :
ConvexPoints (Finset.mk (α := Point) [a,b,c] h) ↔ Point.InGenPos₃ a b c := by
theorem ConvexIndep.triangle_iff {a b c : Point} {h : [a, b, c].Nodup} :
ConvexIndep (Finset.mk (α := Point) [a,b,c] h) ↔ Point.InGenPos₃ a b c := by
constructor <;> intro h2
· simp [not_or, Set.subset_def] at h ⊢
refine Point.InGenPos₃.iff_not_mem_seg.2 ⟨?_, ?_, ?_⟩ <;>
Expand All @@ -44,7 +44,7 @@ theorem ConvexPoints.triangle_iff {a b c : Point} {h : [a, b, c].Nodup} :
· exact h2.2.1 (convexHull_mono (by simp [Set.subset_def]) hp2)
· exact h2.2.2 (convexHull_mono (by simp [Set.subset_def]) hp2)

theorem ConvexPoints.lt_3 {s : Finset Point} (hs : s.card < 3) : ConvexPoints s := by
theorem ConvexIndep.lt_3 {s : Finset Point} (hs : s.card < 3) : ConvexIndep s := by
intro a ha hn
rw [← Finset.coe_erase] at hn
have := Nat.le_of_lt_succ <| (Finset.card_erase_lt_of_mem ha).trans_le (Nat.le_of_lt_succ hs)
Expand All @@ -55,25 +55,25 @@ theorem ConvexPoints.lt_3 {s : Finset Point} (hs : s.card < 3) : ConvexPoints s
subst eq; simp at hn; subst b
simpa using congrArg (a ∈ ·) e1

theorem ConvexPoints.triangle' {s : Finset Point} {S : List Point}
theorem ConvexIndep.triangle' {s : Finset Point} {S : List Point}
(hs : s.card ≤ 3) (sS : s ⊆ S.toFinset) (gp : Point.ListInGenPos S) :
ConvexPoints s := by
ConvexIndep s := by
cases lt_or_eq_of_le hs with
| inl hs => exact ConvexPoints.lt_3 hs
| inl hs => exact ConvexIndep.lt_3 hs
| inr hs =>
match s, s.exists_mk with | _, ⟨[a,b,c], h1, rfl⟩ => ?_
rw [ConvexPoints.triangle_iff]
rw [ConvexIndep.triangle_iff]
apply Point.ListInGenPos.subperm.1 gp
exact List.subperm_of_subset h1 (by simpa [Finset.subset_iff] using sS)

theorem ConvexPoints.antitone {S₁ S₂ : Set Point} (S₁S₂ : S₁ ⊆ S₂)
(convex : ConvexPoints S₂) : ConvexPoints S₁ := by
theorem ConvexIndep.antitone {S₁ S₂ : Set Point} (S₁S₂ : S₁ ⊆ S₂)
(convex : ConvexIndep S₂) : ConvexIndep S₁ := by
intro a aS₁ aCH
have : S₁ \ {a} ⊆ S₂ \ {a} := Set.diff_subset_diff S₁S₂ (le_refl _)
apply convex a (S₁S₂ aS₁) (convexHull_mono this aCH)

def ConvexEmptyIn (S P : Set Point) : Prop :=
ConvexPoints S ∧ EmptyShapeIn S P
ConvexIndep S ∧ EmptyShapeIn S P

theorem ConvexEmptyIn.antitone_left {S₁ S₂ P : Set Point} (S₁S₂ : S₁ ⊆ S₂) :
ConvexEmptyIn S₂ P → ConvexEmptyIn S₁ P := by
Expand All @@ -84,7 +84,7 @@ theorem ConvexEmptyIn.antitone_left {S₁ S₂ P : Set Point} (S₁S₂ : S₁

@[simp]
theorem ConvexEmptyIn.refl_iff {S : Set Point} :
ConvexEmptyIn S S ↔ ConvexPoints S :=
ConvexEmptyIn S S ↔ ConvexIndep S :=
⟨(·.left), (⟨·, EmptyShapeIn.rfl⟩)⟩

theorem ConvexEmptyIn.iff {S P : Set Point} (SP : S ⊆ P) :
Expand Down Expand Up @@ -123,11 +123,11 @@ theorem ConvexEmptyIn.iff_triangles' {s : Finset Point} {S : List Point}
have' sS' : (s:Set _) ⊆ S.toFinset := sS
rw [ConvexEmptyIn.iff_triangles sS' sz]
simp (config := {contextual := true}) [ConvexEmptyIn,
fun a b => ConvexPoints.triangle' a (subset_trans b sS) gp]
fun a b => ConvexIndep.triangle' a (subset_trans b sS) gp]
else
constructor <;> intro
· intro _ h1 h2; cases sz (h1 ▸ Finset.card_le_card h2)
· refine ⟨ConvexPoints.lt_3 (not_le.1 sz), fun p ⟨pS, pn⟩ pS' => pn ?_⟩
· refine ⟨ConvexIndep.lt_3 (not_le.1 sz), fun p ⟨pS, pn⟩ pS' => pn ?_⟩
have := Nat.le_of_lt_succ <| not_le.1 sz
match s.exists_mk, this with
| ⟨[], _, (eq : s = ∅)⟩, _ => subst eq; simp at pS'
Expand Down Expand Up @@ -162,16 +162,16 @@ theorem ConvexEmptyIn.iff_triangles'' {s : Finset Point} {S : List Point}
simp at hp ⊢
assumption

theorem ConvexPoints.iff_triangles' {s : Finset Point} (gp : Point.SetInGenPos s) :
ConvexPoints s ↔ ∀ (t : Finset Point), t.card = 3 → t ⊆ s → EmptyShapeIn t s := by
theorem ConvexIndep.iff_triangles' {s : Finset Point} (gp : Point.SetInGenPos s) :
ConvexIndep s ↔ ∀ (t : Finset Point), t.card = 3 → t ⊆ s → EmptyShapeIn t s := by
have : s = s.toList.toFinset := s.toList_toFinset.symm
rw [← ConvexEmptyIn.refl_iff, this, ← ConvexEmptyIn.iff_triangles' subset_rfl]
apply Point.SetInGenPos.of_nodup
simp [gp]
exact Finset.nodup_toList s

theorem ConvexPoints.iff_triangles'' {s : Finset Point} (gp : Point.SetInGenPos s) :
ConvexPoints s ↔
theorem ConvexIndep.iff_triangles'' {s : Finset Point} (gp : Point.SetInGenPos s) :
ConvexIndep s ↔
∀ᵉ (a ∈ s) (b ∈ s) (c ∈ s), a ≠ b → a ≠ c → b ≠ c →
∀ p ∈ s \ {a,b,c}, ¬PtInTriangle p a b c := by
have : s = s.toList.toFinset := s.toList_toFinset.symm
Expand All @@ -181,7 +181,7 @@ theorem ConvexPoints.iff_triangles'' {s : Finset Point} (gp : Point.SetInGenPos
exact Finset.nodup_toList s

open Point in
theorem split_convexHull (cvx : ConvexPoints S) :
theorem split_convexHull (cvx : ConvexIndep S) :
∀ {a b}, a ∈ S → b ∈ S →
convexHull ℝ S ⊆
convexHull ℝ {x ∈ S | σ a b x ≠ .ccw} ∪
Expand Down Expand Up @@ -254,7 +254,7 @@ theorem split_convexHull (cvx : ConvexPoints S) :
right; refine (convex_convexHull ..).segment_subset hv ?_ this
simp at zab; refine segment_subset_convexHull ?_ ?_ zab <;> simp [S2, ha, hb, σ_self₁, σ_self₂]

theorem EmptyShapeIn.split (cvx : ConvexPoints S) (ha : a ∈ S) (hb : b ∈ S)
theorem EmptyShapeIn.split (cvx : ConvexIndep S) (ha : a ∈ S) (hb : b ∈ S)
(H1 : EmptyShapeIn {x ∈ S | σ a b x ≠ .ccw} P)
(H2 : EmptyShapeIn {x ∈ S | σ a b x ≠ .cw} P) : EmptyShapeIn S P := fun _ ⟨pP, pS⟩ hn =>
(split_convexHull cvx ha hb hn).elim (H1 _ ⟨pP, mt And.left pS⟩) (H2 _ ⟨pP, mt And.left pS⟩)
Expand All @@ -263,6 +263,6 @@ def HasEmptyKGon (n : Nat) (S : Set Point) : Prop :=
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexEmptyIn s S

def HasConvexKGon (n : Nat) (S : Set Point) : Prop :=
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexPoints s
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexIndep s

end Geo
4 changes: 2 additions & 2 deletions Lean/attic/Triangle/TheMainTheorem.lean
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,12 @@ theorem HasEmptyTriangle.iff (S : Set Point) :
match s, s.exists_mk with | _, ⟨[a,b,c], h1, rfl⟩ => ?_
have s_eq : (Finset.mk (Multiset.ofList [a,b,c]) h1 : Set _) = {a, b, c} := by ext; simp
simp [not_or, Set.subset_def] at h1 h2 h3 ⊢
refine ⟨a, h2.1, b, h2.2.1, c, h2.2.2, ConvexPoints.triangle_iff.1 h3, ?_⟩
refine ⟨a, h2.1, b, h2.2.1, c, h2.2.2, ConvexIndep.triangle_iff.1 h3, ?_⟩
simpa [not_or, EmptyShapeIn, s_eq] using h4
· intro ⟨a, ha, b, hb, c, hc, h1, h2⟩
let s : Finset Point := ⟨[a,b,c], by simp [h1.ne₁, h1.ne₂, h1.ne₃]⟩
have s_eq : s = {a,b,c} := by ext; simp
refine ⟨s, rfl, ?_, ConvexPoints.triangle_iff.2 h1, ?_⟩
refine ⟨s, rfl, ?_, ConvexIndep.triangle_iff.2 h1, ?_⟩
· simp [Set.subset_def, ha, hb, hc]
· simpa [s_eq, EmptyShapeIn] using h2

Expand Down

0 comments on commit 8a655d7

Please sign in to comment.