-
Notifications
You must be signed in to change notification settings - Fork 170
Installing infercnv
Pull the docker image.
sudo docker pull trinityctat/infercnv:latest
Start the image with the current working directory path bound, not saving changes to the image.
docker run --rm -it -v `pwd`:`pwd` trinityctat/infercnv:latest bash
Download the pre-built image from https://data.broadinstitute.org/Trinity/CTAT_SINGULARITY/InferCNV/ :
wget https://data.broadinstitute.org/Trinity/CTAT_SINGULARITY/InferCNV/infercnv.X.Y.Z.simg
Or generate a Singularity image from the docker repo:
sudo singularity build infercnv.latest.simg docker://trinityctat/infercnv:latest
Start the image with the current working directory path bound, not saving changes to the image.
singularity shell --writable-tmpfs -e -B `pwd` infercnv.latest.simg
Or run a script directly.
singularity exec -e -B `pwd` infercnv.latest.simg Rscript infercnv_script.R
In order to run infercnv, JAGS (Just Another Gibbs Sampler) must be installed.
Install the JAGS package. This can be installed for Mac, Windows, or Linux. Be sure to download and install the corresponding package matching your OS.
There are several options for installing inferCNV. Choose whichever you prefer:
From within R, run the following:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("infercnv")
From within R, run the following:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(version = "devel")
BiocManager::install("infercnv")
If installing using command line, download the latest release of InferCNV. Then use the following command on command line.
R CMD install infercnv.tar.gz
If installing from directly within R, you can instead use the following command from within R.
library("devtools")
devtools::install_github("broadinstitute/infercnv")
Alternatively, you can pull the code from github and install it like so:
git clone https://github.com/broadinstitute/infercnv
cd infercnv
R
> install.packages("./", repos=NULL, type="source")
- InferCNV Home
- Quick Start
- Installing inferCNV
- Running InferCNV
- Applying Noise Filters
- Predicting CNV via HMM
- Bayesian Mixture Model
- Tumor heterogeneity - define tumor subclusters
- Interpreting the Figure
- Inputs to InferCNV
- Outputs from InferCNV
- More inferCNV example data sets
- Using 10x data
- Interactively navigating data using the Next Generation Heatmap Viewer
- Extracting HMM features
- FAQ and common issues