Skip to content

Commit

Permalink
feat(map_based_prediction): output rich prediction paths based on lan…
Browse files Browse the repository at this point in the history
…elet map for crosswalk users (tier4#922)

* feat(map_based_prediction): output rich prediction paths for pedestrian and bicycle

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* perf(map_based_prediction): early return in crosswalk iteration

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* fix(map_based_prediction): update horizon time

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* fix(map_based_prediction): remove redundant param

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* fix(map_based_prediction): restore original prediction horizon time

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* fix(map_based_prediction): separate processes of each object class explicitly

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* docs(map_based_prediction): add prediction algorithm for crosswalk user

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>

* docs(map_based_prediction): update file name Readme -> README

Signed-off-by: satoshi-ota <satoshi.ota928@gmail.com>
  • Loading branch information
satoshi-ota authored and boyali committed Oct 3, 2022
1 parent fa70801 commit 1f4d4a7
Show file tree
Hide file tree
Showing 10 changed files with 552 additions and 91 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

## Inner-workings / Algorithms

### Path prediction for road users

1. Get lanelet path
The first step is to get the lanelet of the current position of the car. After that, we obtain several trajectories based on the map.

Expand All @@ -30,6 +32,29 @@
4. Drawing predicted trajectories
From the current position and reference trajectories that we get in the step1, we create predicted trajectories by using Quintic polynomial. Note that, since this algorithm consider lateral and longitudinal motions separately, it sometimes generates dynamically-infeasible trajectories when the vehicle travels at a low speed. To deal with this problem, we only make straight line predictions when the vehicle speed is lower than a certain value (which is given as a parameter).

### Path prediction for crosswalk users

This module treats **Pedestrians** and **Bicycles** as objects using the crosswalk, and outputs prediction path based on map and estimated object's velocity, assuming the object has intention to cross the crosswalk, if the objects satisfies at least one of the following conditions:

- move toward the crosswalk
- stop near the crosswalk

<div align="center">
<img src="images/target_objects.svg" width=90%>
</div>

If there are a reachable crosswalk entry points within the `prediction_time_horizon` and the objects satisfies above condition, this module outputs additional predicted path to cross the opposite side via the crosswalk entry point.

<div align="center">
<img src="images/outside_road.svg" width=90%>
</div>

If the target object is inside the road or crosswalk, this module outputs one or two additional prediction path(s) to reach exit point of the crosswalk. The number of prediction paths are depend on whether object is moving or not. If the object is moving, this module outputs one prediction path toward an exit point that existed in the direction of object's movement. One the other hand, if the object has stopped, it is impossible to infer which exit points the object want to go, so this module outputs two prediction paths toward both side exit point.

<div align="center">
<img src="images/inside_road.svg" width=90%>
</div>

## Inputs / Outputs

### Input
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
enable_delay_compensation: true
prediction_time_horizon: 10.0 #[s]
prediction_sampling_delta_time: 0.5 #[s]
min_velocity_for_map_based_prediction: 1.0 #[m/s]
min_velocity_for_map_based_prediction: 1.39 #[m/s]
dist_threshold_for_searching_lanelet: 3.0 #[m]
delta_yaw_threshold_for_searching_lanelet: 0.785 #[rad]
sigma_lateral_offset: 0.5 #[m]
Expand Down
4 changes: 4 additions & 0 deletions perception/map_based_prediction/images/exception.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 4 additions & 0 deletions perception/map_based_prediction/images/inside_road.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 4 additions & 0 deletions perception/map_based_prediction/images/outside_road.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 4 additions & 0 deletions perception/map_based_prediction/images/target_objects.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,11 @@
#include "map_based_prediction/path_generator.hpp"

#include <lanelet2_extension/utility/message_conversion.hpp>
#include <lanelet2_extension/utility/query.hpp>
#include <lanelet2_extension/utility/utilities.hpp>
#include <rclcpp/rclcpp.hpp>
#include <tier4_autoware_utils/ros/transform_listener.hpp>
#include <tier4_autoware_utils/tier4_autoware_utils.hpp>

#include <autoware_auto_mapping_msgs/msg/had_map_bin.hpp>
#include <autoware_auto_perception_msgs/msg/predicted_objects.hpp>
Expand Down Expand Up @@ -86,6 +88,7 @@ using autoware_auto_perception_msgs::msg::PredictedPath;
using autoware_auto_perception_msgs::msg::TrackedObject;
using autoware_auto_perception_msgs::msg::TrackedObjectKinematics;
using autoware_auto_perception_msgs::msg::TrackedObjects;
using tier4_autoware_utils::StopWatch;

class MapBasedPredictionNode : public rclcpp::Node
{
Expand Down Expand Up @@ -113,6 +116,9 @@ class MapBasedPredictionNode : public rclcpp::Node
// Path Generator
std::shared_ptr<PathGenerator> path_generator_;

// Crosswalk Entry Points
lanelet::ConstLanelets crosswalks_;

// Parameters
bool enable_delay_compensation_;
double prediction_time_horizon_;
Expand All @@ -131,6 +137,9 @@ class MapBasedPredictionNode : public rclcpp::Node
double diff_dist_threshold_to_right_bound_;
double reference_path_resolution_;

// Stop watch
StopWatch<std::chrono::milliseconds> stop_watch_;

// Member Functions
void mapCallback(const HADMapBin::ConstSharedPtr msg);
void objectsCallback(const TrackedObjects::ConstSharedPtr in_objects);
Expand All @@ -140,6 +149,8 @@ class MapBasedPredictionNode : public rclcpp::Node

PredictedObject convertToPredictedObject(const TrackedObject & tracked_object);

PredictedObject getPredictedObjectAsCrosswalkUser(const TrackedObject & object);

void removeOldObjectsHistory(const double current_time);

LaneletsData getCurrentLanelets(const TrackedObject & object);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@
#include <geometry_msgs/msg/pose_stamped.hpp>
#include <geometry_msgs/msg/twist.hpp>

#include <memory>
#include <utility>
#include <vector>

namespace map_based_prediction
Expand All @@ -47,13 +49,16 @@ struct FrenetPoint
float d_acc;
};

using EntryPoint = std::pair<Eigen::Vector2d /*in*/, Eigen::Vector2d /*out*/>;
using FrenetPath = std::vector<FrenetPoint>;
using PosePath = std::vector<geometry_msgs::msg::Pose>;

class PathGenerator
{
public:
PathGenerator(const double time_horizon, const double sampling_time_interval);
PathGenerator(
const double time_horizon, const double sampling_time_interval,
const double min_velocity_for_map_based_prediction);

PredictedPath generatePathForNonVehicleObject(const TrackedObject & object);

Expand All @@ -64,10 +69,17 @@ class PathGenerator
PredictedPath generatePathForOnLaneVehicle(
const TrackedObject & object, const PosePath & ref_paths);

PredictedPath generatePathForCrosswalkUser(
const TrackedObject & object, const EntryPoint & reachable_crosswalk) const;

PredictedPath generatePathToTargetPoint(
const TrackedObject & object, const Eigen::Vector2d & point) const;

private:
// Parameters
double time_horizon_;
double sampling_time_interval_;
double min_velocity_for_map_based_prediction_;

// Member functions
PredictedPath generateStraightPath(const TrackedObject & object) const;
Expand Down
Loading

0 comments on commit 1f4d4a7

Please sign in to comment.