forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Support APCNet * code optimization * add apcnet configs * add benchmark * add readme and model zoo * fix doc
- Loading branch information
1 parent
7e918e3
commit a5d15ae
Showing
19 changed files
with
353 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# model settings | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoder', | ||
pretrained='open-mmlab://resnet50_v1c', | ||
backbone=dict( | ||
type='ResNetV1c', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
dilations=(1, 1, 2, 4), | ||
strides=(1, 2, 1, 1), | ||
norm_cfg=norm_cfg, | ||
norm_eval=False, | ||
style='pytorch', | ||
contract_dilation=True), | ||
decode_head=dict( | ||
type='APCHead', | ||
in_channels=2048, | ||
in_index=3, | ||
channels=512, | ||
pool_scales=(1, 2, 3, 6), | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=dict(type='SyncBN', requires_grad=True), | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
auxiliary_head=dict( | ||
type='FCNHead', | ||
in_channels=1024, | ||
in_index=2, | ||
channels=256, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4))) | ||
# model training and testing settings | ||
train_cfg = dict() | ||
test_cfg = dict(mode='whole') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Adaptive Pyramid Context Network for Semantic Segmentation | ||
|
||
## Introduction | ||
|
||
```latex | ||
@InProceedings{He_2019_CVPR, | ||
author = {He, Junjun and Deng, Zhongying and Zhou, Lei and Wang, Yali and Qiao, Yu}, | ||
title = {Adaptive Pyramid Context Network for Semantic Segmentation}, | ||
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, | ||
month = {June}, | ||
year = {2019} | ||
} | ||
``` | ||
|
||
## Results and models | ||
|
||
### Cityscapes | ||
|
||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download | | ||
|--------|----------|-----------|--------:|----------|----------------|------:|--------------:|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ||
| APCNet | R-50-D8 | 512x1024 | 40000 | 7.7 | 3.57 | 78.02 | 79.26 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes-20201214_115717.log.json) | | ||
| APCNet | R-101-D8 | 512x1024 | 40000 | 11.2 | 2.15 | 79.08 | 80.34 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes-20201214_115716.log.json) | | ||
| APCNet | R-50-D8 | 769x769 | 40000 | 8.7 | 1.52 | 77.89 | 79.75 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes-20201214_115717.log.json) | | ||
| APCNet | R-101-D8 | 769x769 | 40000 | 12.7 | 1.03 | 77.96 | 79.24 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes-20201214_115718.log.json) | | ||
| APCNet | R-50-D8 | 512x1024 | 80000 | - | - | 78.96 | 79.94 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes-20201214_115716.log.json) | | ||
| APCNet | R-101-D8 | 512x1024 | 80000 | - | - | 79.64 | 80.61 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes-20201214_115705.log.json) | | ||
| APCNet | R-50-D8 | 769x769 | 80000 | - | - | 78.79 | 80.35 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes-20201214_115718.log.json) | | ||
| APCNet | R-101-D8 | 769x769 | 80000 | - | - | 78.45 | 79.91 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes-20201214_115716.log.json) | | ||
|
||
### ADE20K | ||
|
||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download | | ||
|--------|----------|-----------|--------:|----------|----------------|------:|--------------:|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ||
| APCNet | R-50-D8 | 512x512 | 80000 | 10.1 | 19.61 | 42.20 | 43.30 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k-20201214_115705.log.json) | | ||
| APCNet | R-101-D8 | 512x512 | 80000 | 13.6 | 13.10 | 45.54 | 46.65 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k-20201214_115704.log.json) | | ||
| APCNet | R-50-D8 | 512x512 | 160000 | - | - | 43.40 | 43.94 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k-20201214_115706.log.json) | | ||
| APCNet | R-101-D8 | 512x512 | 160000 | - | - | 45.41 | 46.63 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k-20201214_115705.log.json) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
_base_ = './apcnet_r50-d8_512x1024_40k_cityscapes.py' | ||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
_base_ = './apcnet_r50-d8_512x1024_80k_cityscapes.py' | ||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
_base_ = './apcnet_r50-d8_512x512_160k_ade20k.py' | ||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
_base_ = './apcnet_r50-d8_512x512_80k_ade20k.py' | ||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
_base_ = './apcnet_r50-d8_769x769_40k_cityscapes.py' | ||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
_base_ = './apcnet_r50-d8_769x769_80k_cityscapes.py' | ||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
_base_ = [ | ||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
_base_ = [ | ||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
_base_ = [ | ||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | ||
] | ||
model = dict( | ||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) | ||
test_cfg = dict(mode='whole') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
_base_ = [ | ||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' | ||
] | ||
model = dict( | ||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) | ||
test_cfg = dict(mode='whole') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
_base_ = [ | ||
'../_base_/models/apcnet_r50-d8.py', | ||
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', | ||
'../_base_/schedules/schedule_40k.py' | ||
] | ||
model = dict( | ||
decode_head=dict(align_corners=True), | ||
auxiliary_head=dict(align_corners=True)) | ||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
_base_ = [ | ||
'../_base_/models/apcnet_r50-d8.py', | ||
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', | ||
'../_base_/schedules/schedule_80k.py' | ||
] | ||
model = dict( | ||
decode_head=dict(align_corners=True), | ||
auxiliary_head=dict(align_corners=True)) | ||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from mmcv.cnn import ConvModule | ||
|
||
from mmseg.ops import resize | ||
from ..builder import HEADS | ||
from .decode_head import BaseDecodeHead | ||
|
||
|
||
class ACM(nn.Module): | ||
"""Adaptive Context Module used in APCNet. | ||
Args: | ||
pool_scale (int): Pooling scale used in Adaptive Context | ||
Module to extract region fetures. | ||
fusion (bool): Add one conv to fuse residual feature. | ||
in_channels (int): Input channels. | ||
channels (int): Channels after modules, before conv_seg. | ||
conv_cfg (dict | None): Config of conv layers. | ||
norm_cfg (dict | None): Config of norm layers. | ||
act_cfg (dict): Config of activation layers. | ||
""" | ||
|
||
def __init__(self, pool_scale, fusion, in_channels, channels, conv_cfg, | ||
norm_cfg, act_cfg): | ||
super(ACM, self).__init__() | ||
self.pool_scale = pool_scale | ||
self.fusion = fusion | ||
self.in_channels = in_channels | ||
self.channels = channels | ||
self.conv_cfg = conv_cfg | ||
self.norm_cfg = norm_cfg | ||
self.act_cfg = act_cfg | ||
self.pooled_redu_conv = ConvModule( | ||
self.in_channels, | ||
self.channels, | ||
1, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg) | ||
|
||
self.input_redu_conv = ConvModule( | ||
self.in_channels, | ||
self.channels, | ||
1, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg) | ||
|
||
self.global_info = ConvModule( | ||
self.channels, | ||
self.channels, | ||
1, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg) | ||
|
||
self.gla = nn.Conv2d(self.channels, self.pool_scale**2, 1, 1, 0) | ||
|
||
self.residual_conv = ConvModule( | ||
self.channels, | ||
self.channels, | ||
1, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg) | ||
|
||
if self.fusion: | ||
self.fusion_conv = ConvModule( | ||
self.channels, | ||
self.channels, | ||
1, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg) | ||
|
||
def forward(self, x): | ||
"""Forward function.""" | ||
pooled_x = F.adaptive_avg_pool2d(x, self.pool_scale) | ||
# [batch_size, channels, h, w] | ||
x = self.input_redu_conv(x) | ||
# [batch_size, channels, pool_scale, pool_scale] | ||
pooled_x = self.pooled_redu_conv(pooled_x) | ||
batch_size = x.size(0) | ||
# [batch_size, pool_scale * pool_scale, channels] | ||
pooled_x = pooled_x.view(batch_size, self.channels, | ||
-1).permute(0, 2, 1).contiguous() | ||
# [batch_size, h * w, pool_scale * pool_scale] | ||
affinity_matrix = self.gla(x + resize( | ||
self.global_info(F.adaptive_avg_pool2d(x, 1)), size=x.shape[2:]) | ||
).permute(0, 2, 3, 1).reshape( | ||
batch_size, -1, self.pool_scale**2) | ||
affinity_matrix = F.sigmoid(affinity_matrix) | ||
# [batch_size, h * w, channels] | ||
z_out = torch.matmul(affinity_matrix, pooled_x) | ||
# [batch_size, channels, h * w] | ||
z_out = z_out.permute(0, 2, 1).contiguous() | ||
# [batch_size, channels, h, w] | ||
z_out = z_out.view(batch_size, self.channels, x.size(2), x.size(3)) | ||
z_out = self.residual_conv(z_out) | ||
z_out = F.relu(z_out + x) | ||
if self.fusion: | ||
z_out = self.fusion_conv(z_out) | ||
|
||
return z_out | ||
|
||
|
||
@HEADS.register_module() | ||
class APCHead(BaseDecodeHead): | ||
"""Adaptive Pyramid Context Network for Semantic Segmentation. | ||
This head is the implementation of | ||
`APCNet <https://openaccess.thecvf.com/content_CVPR_2019/papers/\ | ||
He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_\ | ||
CVPR_2019_paper.pdf>`_. | ||
Args: | ||
pool_scales (tuple[int]): Pooling scales used in Adaptive Context | ||
Module. Default: (1, 2, 3, 6). | ||
fusion (bool): Add one conv to fuse residual feature. | ||
""" | ||
|
||
def __init__(self, pool_scales=(1, 2, 3, 6), fusion=True, **kwargs): | ||
super(APCHead, self).__init__(**kwargs) | ||
assert isinstance(pool_scales, (list, tuple)) | ||
self.pool_scales = pool_scales | ||
self.fusion = fusion | ||
acm_modules = [] | ||
for pool_scale in self.pool_scales: | ||
acm_modules.append( | ||
ACM(pool_scale, | ||
self.fusion, | ||
self.in_channels, | ||
self.channels, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg)) | ||
self.acm_modules = nn.ModuleList(acm_modules) | ||
self.bottleneck = ConvModule( | ||
self.in_channels + len(pool_scales) * self.channels, | ||
self.channels, | ||
3, | ||
padding=1, | ||
conv_cfg=self.conv_cfg, | ||
norm_cfg=self.norm_cfg, | ||
act_cfg=self.act_cfg) | ||
|
||
def forward(self, inputs): | ||
"""Forward function.""" | ||
x = self._transform_inputs(inputs) | ||
acm_outs = [x] | ||
for acm_module in self.acm_modules: | ||
acm_outs.append(acm_module(x)) | ||
acm_outs = torch.cat(acm_outs, dim=1) | ||
output = self.bottleneck(acm_outs) | ||
output = self.cls_seg(output) | ||
return output |
Oops, something went wrong.