-
Notifications
You must be signed in to change notification settings - Fork 780
/
ImuFactorsExample.cpp
300 lines (258 loc) · 11.7 KB
/
ImuFactorsExample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file imuFactorsExample
* @brief Test example for using GTSAM ImuFactor and ImuCombinedFactor
* navigation code.
* @author Garrett (ghemann@gmail.com), Luca Carlone
*/
/**
* Example of use of the imuFactors (imuFactor and combinedImuFactor) in
* conjunction with GPS
* - imuFactor is used by default. You can test combinedImuFactor by
* appending a `-c` flag at the end (see below for example command).
* - we read IMU and GPS data from a CSV file, with the following format:
* A row starting with "i" is the first initial position formatted with
* N, E, D, qx, qY, qZ, qW, velN, velE, velD
* A row starting with "0" is an imu measurement
* linAccN, linAccE, linAccD, angVelN, angVelE, angVelD
* A row starting with "1" is a gps correction formatted with
* N, E, D, qX, qY, qZ, qW
* Note that for GPS correction, we're only using the position not the
* rotation. The rotation is provided in the file for ground truth comparison.
*
* Usage: ./ImuFactorsExample [data_csv_path] [-c]
* optional arguments:
* data_csv_path path to the CSV file with the IMU data.
* -c use CombinedImuFactor
*/
// GTSAM related includes.
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>
#include <cstring>
#include <fstream>
#include <iostream>
using namespace gtsam;
using namespace std;
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
static const char output_filename[] = "imuFactorExampleResults.csv";
static const char use_combined_imu_flag[3] = "-c";
int main(int argc, char* argv[]) {
string data_filename;
bool use_combined_imu = false;
if (argc < 2) {
printf("using default CSV file\n");
data_filename = findExampleDataFile("imuAndGPSdata.csv");
} else if (argc < 3) {
if (strcmp(argv[1], use_combined_imu_flag) == 0) {
printf("using CombinedImuFactor\n");
use_combined_imu = true;
printf("using default CSV file\n");
data_filename = findExampleDataFile("imuAndGPSdata.csv");
} else {
data_filename = argv[1];
}
} else {
data_filename = argv[1];
if (strcmp(argv[2], use_combined_imu_flag) == 0) {
printf("using CombinedImuFactor\n");
use_combined_imu = true;
}
}
// Set up output file for plotting errors
FILE* fp_out = fopen(output_filename, "w+");
fprintf(fp_out,
"#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx,"
"gt_qy,gt_qz,gt_qw\n");
// Begin parsing the CSV file. Input the first line for initialization.
// From there, we'll iterate through the file and we'll preintegrate the IMU
// or add in the GPS given the input.
ifstream file(data_filename.c_str());
string value;
// Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD)
Vector10 initial_state;
getline(file, value, ','); // i
for (int i = 0; i < 9; i++) {
getline(file, value, ',');
initial_state(i) = atof(value.c_str());
}
getline(file, value, '\n');
initial_state(9) = atof(value.c_str());
cout << "initial state:\n" << initial_state.transpose() << "\n\n";
// Assemble initial quaternion through GTSAM constructor
// ::quaternion(w,x,y,z);
Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3),
initial_state(4), initial_state(5));
Point3 prior_point(initial_state.head<3>());
Pose3 prior_pose(prior_rotation, prior_point);
Vector3 prior_velocity(initial_state.tail<3>());
imuBias::ConstantBias prior_imu_bias; // assume zero initial bias
Values initial_values;
int correction_count = 0;
initial_values.insert(X(correction_count), prior_pose);
initial_values.insert(V(correction_count), prior_velocity);
initial_values.insert(B(correction_count), prior_imu_bias);
// Assemble prior noise model and add it the graph.`
auto pose_noise_model = noiseModel::Diagonal::Sigmas(
(Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5)
.finished()); // rad,rad,rad,m, m, m
auto velocity_noise_model = noiseModel::Isotropic::Sigma(3, 0.1); // m/s
auto bias_noise_model = noiseModel::Isotropic::Sigma(6, 1e-3);
// Add all prior factors (pose, velocity, bias) to the graph.
NonlinearFactorGraph* graph = new NonlinearFactorGraph();
graph->addPrior(X(correction_count), prior_pose, pose_noise_model);
graph->addPrior(V(correction_count), prior_velocity, velocity_noise_model);
graph->addPrior(B(correction_count), prior_imu_bias, bias_noise_model);
// We use the sensor specs to build the noise model for the IMU factor.
double accel_noise_sigma = 0.0003924;
double gyro_noise_sigma = 0.000205689024915;
double accel_bias_rw_sigma = 0.004905;
double gyro_bias_rw_sigma = 0.000001454441043;
Matrix33 measured_acc_cov = I_3x3 * pow(accel_noise_sigma, 2);
Matrix33 measured_omega_cov = I_3x3 * pow(gyro_noise_sigma, 2);
Matrix33 integration_error_cov =
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
I_6x6 * 1e-5; // error in the bias used for preintegration
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
// PreintegrationBase params:
p->accelerometerCovariance =
measured_acc_cov; // acc white noise in continuous
p->integrationCovariance =
integration_error_cov; // integration uncertainty continuous
// should be using 2nd order integration
// PreintegratedRotation params:
p->gyroscopeCovariance =
measured_omega_cov; // gyro white noise in continuous
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
std::shared_ptr<PreintegrationType> preintegrated = nullptr;
if (use_combined_imu) {
preintegrated =
std::make_shared<PreintegratedCombinedMeasurements>(p, prior_imu_bias);
} else {
preintegrated =
std::make_shared<PreintegratedImuMeasurements>(p, prior_imu_bias);
}
assert(preintegrated);
// Store previous state for imu integration and latest predicted outcome.
NavState prev_state(prior_pose, prior_velocity);
NavState prop_state = prev_state;
imuBias::ConstantBias prev_bias = prior_imu_bias;
// Keep track of total error over the entire run as simple performance metric.
double current_position_error = 0.0, current_orientation_error = 0.0;
double output_time = 0.0;
double dt = 0.005; // The real system has noise, but here, results are nearly
// exactly the same, so keeping this for simplicity.
// All priors have been set up, now iterate through the data file.
while (file.good()) {
// Parse out first value
getline(file, value, ',');
int type = atoi(value.c_str());
if (type == 0) { // IMU measurement
Vector6 imu;
for (int i = 0; i < 5; ++i) {
getline(file, value, ',');
imu(i) = atof(value.c_str());
}
getline(file, value, '\n');
imu(5) = atof(value.c_str());
// Adding the IMU preintegration.
preintegrated->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt);
} else if (type == 1) { // GPS measurement
Vector7 gps;
for (int i = 0; i < 6; ++i) {
getline(file, value, ',');
gps(i) = atof(value.c_str());
}
getline(file, value, '\n');
gps(6) = atof(value.c_str());
correction_count++;
// Adding IMU factor and GPS factor and optimizing.
if (use_combined_imu) {
auto preint_imu_combined =
dynamic_cast<const PreintegratedCombinedMeasurements&>(
*preintegrated);
CombinedImuFactor imu_factor(
X(correction_count - 1), V(correction_count - 1),
X(correction_count), V(correction_count), B(correction_count - 1),
B(correction_count), preint_imu_combined);
graph->add(imu_factor);
} else {
auto preint_imu =
dynamic_cast<const PreintegratedImuMeasurements&>(*preintegrated);
ImuFactor imu_factor(X(correction_count - 1), V(correction_count - 1),
X(correction_count), V(correction_count),
B(correction_count - 1), preint_imu);
graph->add(imu_factor);
imuBias::ConstantBias zero_bias(Vector3(0, 0, 0), Vector3(0, 0, 0));
graph->add(BetweenFactor<imuBias::ConstantBias>(
B(correction_count - 1), B(correction_count), zero_bias,
bias_noise_model));
}
auto correction_noise = noiseModel::Isotropic::Sigma(3, 1.0);
GPSFactor gps_factor(X(correction_count),
Point3(gps(0), // N,
gps(1), // E,
gps(2)), // D,
correction_noise);
graph->add(gps_factor);
// Now optimize and compare results.
prop_state = preintegrated->predict(prev_state, prev_bias);
initial_values.insert(X(correction_count), prop_state.pose());
initial_values.insert(V(correction_count), prop_state.v());
initial_values.insert(B(correction_count), prev_bias);
LevenbergMarquardtOptimizer optimizer(*graph, initial_values);
Values result = optimizer.optimize();
// Overwrite the beginning of the preintegration for the next step.
prev_state = NavState(result.at<Pose3>(X(correction_count)),
result.at<Vector3>(V(correction_count)));
prev_bias = result.at<imuBias::ConstantBias>(B(correction_count));
// Reset the preintegration object.
preintegrated->resetIntegrationAndSetBias(prev_bias);
// Print out the position and orientation error for comparison.
Vector3 gtsam_position = prev_state.pose().translation();
Vector3 position_error = gtsam_position - gps.head<3>();
current_position_error = position_error.norm();
Quaternion gtsam_quat = prev_state.pose().rotation().toQuaternion();
Quaternion gps_quat(gps(6), gps(3), gps(4), gps(5));
Quaternion quat_error = gtsam_quat * gps_quat.inverse();
quat_error.normalize();
Vector3 euler_angle_error(quat_error.x() * 2, quat_error.y() * 2,
quat_error.z() * 2);
current_orientation_error = euler_angle_error.norm();
// display statistics
cout << "Position error:" << current_position_error << "\t "
<< "Angular error:" << current_orientation_error << "\n";
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
output_time, gtsam_position(0), gtsam_position(1),
gtsam_position(2), gtsam_quat.x(), gtsam_quat.y(), gtsam_quat.z(),
gtsam_quat.w(), gps(0), gps(1), gps(2), gps_quat.x(),
gps_quat.y(), gps_quat.z(), gps_quat.w());
output_time += 1.0;
} else {
cerr << "ERROR parsing file\n";
return 1;
}
}
fclose(fp_out);
cout << "Complete, results written to " << output_filename << "\n\n";
return 0;
}