BOLDconnectR is a package designed for retrieval, transformation and analysis of the data available in the Barcode Of Life Data Systems (BOLD) database. This package provides the functionality to obtain public and private user data available in the database in the Barcode Core Data Model (BCDM) format. Data include information on the taxonomy,geography,collection,identification and DNA barcode sequence of every submission. The manual is currently hosted here (https://github.com/boldsystems-central/BOLDconnectR_examples/blob/main/BOLDconnectR_1.0.0.pdf)
BOLDconnectR requires R version 4.0 or above to function properly. The versions of the dependent packages, therefore, have also been set to work with R >= 4.0. In addition, there are a few suggested packages that are not mandatory for BOLDconnectR installation, but, are essential for a couple of functions to work. The names and exact versions of all the dependencies/suggestions are given here ('Imports' and 'Suggests' section) (https://github.com/boldsystems-central/BOLDconnectR/blob/main/DESCRIPTION). More details on how to install the Suggested packages are provided below.
R version can be checked quickly by running the R.version
command in your console.
All the installed packages with their respective versions can be checked using the installed.packages()
function.
The package can be installed using devtools::install_github
function
from the devtools
package in R (which needs to be installed before
installing BOLDConnectR).
devtools::install_github("https://github.com/boldsystems-central/BOLDconnectR")
library(BOLDconnectR)
- bold.fields.info
- bold.apikey
- bold.fetch
- bold.public.search
- bold.data.summarize
- bold.analyze.align
- bold.analyze.tree
- bold.analyze.diversity
- bold.analyze.map
- bold.export
bold.analyze.align requires the packages msa
and Biostrings
to be installed and imported in the R session beforehand. Function 7 also uses the output generated from function 6.
msa
and Biostrings
can be installed using using BiocManager
package.
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("msa")
BiocManager::install("Biostrings")
library(msa)
library(Biostrings)
The function bold.fetch
requires an api key
internally in order to
access and download all public + private user data. The API key needed
to retrieve BOLD records is found in the BOLD ‘Workbench’
https://bench.boldsystems.org/index.php/Login/page?destination=MAS_Management_UserConsole.
After logging in, navigate to ‘Your Name’ (located at the top left-hand
side of the window) and click ‘Edit User Preferences’. You can find the
API key in the ‘User Data’ section. Please note that to have an API key
available in the workbench, a user must have uploaded at least 10,000
records to BOLD. API key can be saved in the R session using
bold.apikey()
function.
# Substitute ‘00000000-0000-0000-0000-000000000000’ with your key
# bold.apikey(‘00000000-0000-0000-0000-000000000000’)
API key function must be run prior to using the fetch function (Please see above).
BCDM_data<-bold.fetch(get_by = "processid",
identifiers = test.data$processid)
#> �[32mInitiating download�[0m
#> �[31m Downloading data in a single batch �[0m
#> �[32mDownload complete & BCDM dataframe generated�[0m
knitr::kable(head(BCDM_data,4))
processid | record_id | insdc_acs | sampleid | specimenid | taxid | short_note | identification_method | museumid | fieldid | collection_code | processid_minted_date | inst | funding_src | sex | life_stage | reproduction | habitat | collectors | site_code | specimen_linkout | collection_event_id | sampling_protocol | tissue_type | collection_date_start | collection_time | associated_taxa | associated_specimens | voucher_type | notes | taxonomy_notes | collection_notes | geoid | marker_code | kingdom | phylum | class | order | family | subfamily | tribe | genus | species | subspecies | identification | identification_rank | species_reference | identified_by | sequence_run_site | nuc | nuc_basecount | sequence_upload_date | bin_uri | bin_created_date | elev | depth | coord | coord_source | coord_accuracy | elev_accuracy | depth_accuracy | realm | biome | ecoregion | region | sector | site | country_iso | country.ocean | province.state | bold_recordset_code_arr | collection_date_end |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BBCNP1869-14 | BBCNP1869-14.COI-5P | KP653969 | BIOUG12563-F04 | 4467470 | 9199 | Wood Buffalo NP | NA | BIOUG12563-F04 | L#12BIOBUS-0140 | BIOUG | 2014-04-21 | Centre for Biodiversity Genomics | iBOL:WG1.9 | NA | I | S | NA | BIOBus 2012 | NA | NA | NA | Free Hand Collection | NA | 2012-06-03 | NA | NA | NA | museum voucher | hand collecting|warm and sunny | CollectionsID | NA | 533 | COI-5P | Animalia | Arthropoda | Arachnida | Araneae | Salticidae | NA | NA | Eris | Eris militaris | NA | Eris militaris | species | Hentz, 1845 | Gergin A. Blagoev | Centre for Biodiversity Genomics | TTAATTTTTGGAGCTTGATCAGCTATAGTTGGTACTGCTATAAGAGTATTAATTCGAATAGAATTAGGACAAACTGGATCATTTTTAGGTAATGATCATATATATAATGTAATTGTAACTGCTCATGCTTTTGTAATGATTTTTTTTATAGTAATACCAATTATAATTGGGGGATTTGGTAATTGGTTAGTTCCTTTAATGTTAGGGGCTCCGGATATAGCTTTTCCTCGAATAAATAATTTAAGTTTTTGATTATTACCTCCTTCTTTATTTTTATTATTTATTTCTTCTATAGCTGAAATAGGGGTTGGAGCTGGATGAACAGTATATCCTCCTTTGGCATCTATTGTTGGACATAATGGTAGATCAGTAGATTTTGCTATTTTTTCTTTACATTTAGCTGGTGCCTCATCAATTATAGGAGCTATTAATTTTATTTCTACTATTATTAATATACGATCAGTAGGAATATCTTTAGATAAAATTCCTTTATTTGTTTGATCTGTAATAATTACTGCTGTATTATTATTGTTATCATTACCTGTTTTAGCA——————————————————————————— | 552 | 2014-06-26 | BOLD:AAA5654 | 2010-07-15 | 276 | NA | 59.536,-112.231 | GPSmap 60Cx | NA | NA | NA | Nearctic | NA | Muskwa-Slave_Lake_taiga | Wood Buffalo NP | Pine Lake Campground | mature forest, black spruce/aspen|by the lake | CA | Canada | Alberta | BBCNP,DS-SOC2014,DS-ARANCCYH,DS-BBWBNP1,DS-SPCANADA,DS-JUMPGLOB | NA |
CNWLG866-12 | CNWLG866-12.COI-5P | KM834791 | BIOUG04328-E12 | 3000805 | 9199 | Waterton Lakes NP | BOLD ID Engine: top hits | BIOUG04328-E12 | GMP#00286 | BIOUG | 2012-12-06 | Centre for Biodiversity Genomics | iBOL:WG1.9 | NA | NA | S | Forest | Emma Sylvester | BIOUG:WATERTON-NP:4 | NA | NA | Malaise Trap | Whole Voucher | 2012-08-14 | NA | NA | NA | Vouchered:Registered Collection | NA | NA | Aspen forest | 533 | COI-5P | Animalia | Arthropoda | Arachnida | Araneae | Salticidae | NA | NA | Eris | Eris militaris | NA | Eris militaris | species | Hentz, 1845 | Monica R. Young | Centre for Biodiversity Genomics | -ACGTTATATTTAATTTTTGGAGCTTGATCAGCTATAGTTGGTACTGCTATA—AGAGTATTAATTCGAATAGAATTAGGACAAACTGGATCATTTTTAGGTAAT—GATCATATATATAATGTAATTGTAACTGCTCATGCTTTTGTAATGATTTTTTTTATAGTAATACCAATTATAATTGGGGGATTTGGTAATTGGTTAGTTCCTTTAATG—TTAGGGGCTCCGGATATAGCTTTTCCTCGAATAAATAATTTAAGTTTTTGATTATTACCTCCTTCTTTATTTTTATTGTTTATTTCTTCTATAGCTGAAATAGGGGTTGGAGCTGGATGAACAGTATATCCTCCTTTGGCATCTATTGTTGGACATAATGGTAGATCAGTAGATTTT—GCTATTTTTTCTTTACATTTAGCTGGTGCTTCATCAATTATAGGAGCTATTAATTTTATTTCTACTATTATTAATATACGATCAGTAGGAATATCTTTAGATAAAATTCCTTTATTTGTTTGATCTGTAATAATTACTGCTGTATTATTATTGTTATCATTACCTGTTTTAGCAGGA————————————————————————————————— | 564 | 2013-06-27 | BOLD:AAA5654 | 2010-07-15 | 1338 | NA | 49.083,-113.876 | GPS | NA | NA | NA | Nearctic | NA | Northern_Rockies_conifer_forests | Waterton Lakes National Park | Hwy 6, just east of Hwy 5 | Foothills Parkland Region | CA | Canada | Alberta | CNWLG,DS-MOB112,DS-MOB113,DS-BICNP02,DS-SOC2014,DS-MYBCA,DS-JALPHA,DS-ARANCCYH,DATASET-BBWLNP1,DS-SPCANADA,DS-JUMPGLOB,DS-20GMP12 | 2012-08-21 |
PPELE427-11 | PPELE427-11.COI-5P | JN308615 | BIOUG00625-G08 | 1913522 | 560524 | Point Pelee NP | BIOUG00625-G08 | L#10PCPP-0233 | BIOUG | 2011-03-14 | Centre for Biodiversity Genomics | iBOL:WG1.9 | M | A | S | Forest | T.F.Mitterboeck, C.Vandermeer, V.Junea, C.Sobel | NA | NA | NA | Sweep Net | 2010-06-23 | NA | NA | NA | Vouchered:Registered Collection | NA | NA | Sweep Net 38||Mixed Carolinian forest with open sunny camp grounds and grasses | 528 | COI-5P | Animalia | Arthropoda | Arachnida | Araneae | Salticidae | NA | NA | Pelegrina | Pelegrina galathea | NA | Pelegrina galathea | species | Walckenaer, 1837 | Gergin A. Blagoev | Centre for Biodiversity Genomics | AACTTTATATTTAATTTTTGGAGCTTGATCAGCTATAGTTGGAACCGCTATAAGAGTATTAATTCGTATAGAATTAGGACAGACTGGTTCATTTTTAGGAAATGATCATATGTATAATGTAATTGTAACTGCACATGCTTTTGTTATAATTTTTTTTATGGTAATACCGATTTTAATTGGTGGATTTGGTAATTGATTAGTTCCTTTAATATTGGGAGCTCCTGATATAGCTTTTCCTCGTATAAATAATTTAAGATTTTGGCTATTACCTCCTTCTTTATTTTTATTATTTATTTCTTCTATGGCTGAAATAGGAGTAGGGGCTGGGTGAACTGTATATCCACCTTTAGCTTCTATTGTAGGACATAATGGAAGATCAGTAGACTTTGCAATTTTTTCTTTACATTTAGCTGGTGCTTCATCAATCATAGGAGCTATTAATTTTATTTCTACTATTATTAATATACGATCTTTAGGAATATCTTTTGATAAGGTTCCTTTATTTGTTTGATCCGTTTTAATTACTGCTGTTTTGTTATTACTTTCGTTACCGGTTTTAGCAGGAGCTATTACTATATTATTAACTGATCGAAATTTTAATACTTCTTTTTTTGATCCTGCAGGTGGAGGTGATCCTATTTTATTTCAACATTTATTT | 658 | 2011-04-27 | BOLD:AAB2930 | 2010-07-15 | 185 | NA | 41.936,-82.516 | NA | NA | NA | NA | Nearctic | NA | Southern_Great_Lakes_forests | Point Pelee NP | 15km SE of Leamington | Camp Henry, Big and Little Raccon Sites | CA | Canada | Ontario | PPELE,DATASET-BBPPNP1,DS-MOB112,DS-MOB113,DS-BICNP02,DS-SOC2014,DS-ARANCCYH,DS-SPCANADA,DS-JUMPGLOB,DS-VALARCA,DS-CANREF2,DS-CANREF22 | NA | ||
RBINA825-13 | RBINA825-13.COI-5P | KP649596 | BIOUG07962-E01 | 3743082 | 560524 | Rouge NP | NA | BIOUG07962-E01 | ON13-C0022 | BIOUG | 2013-09-18 | Centre for Biodiversity Genomics | iBOL:WG1.9 | NA | A | NA | NA | BIO Team | NA | NA | NA | Sweep Net | Whole Voucher | 2013-09-15 | NA | NA | NA | Vouchered:Registered Collection | NA | CollectionsID | 5 min sweep | 528 | COI-5P | Animalia | Arthropoda | Arachnida | Araneae | Salticidae | NA | NA | Pelegrina | Pelegrina galathea | NA | Pelegrina galathea | species | Walckenaer, 1837 | NA | Biodiversity and Climate Research Centre, Germany | -ACTTTATATTTAATTTTTGGAGCTTGATCAGCTATAGTTGGAACCGCTATA—AGAGTATTAATTCGTATAGAATTAGGACAGACTGGTTCATTTTTAGGAAAT—GATCATATGTATAATGTAATTGTAACTGCACATGCTTTTGTTATAATTTTTTTTATAGTAATACCGATTTTAATTGGTGGATTTGGTAATTGATTAGTTCCTTTAATA—TTGGGAGCTCCTGATATAGCTTTTCCTCGTATAAATAATTTAAGATTTTGGTTATTACCTCCTTCTTTATTTTTATTATTTATTTCTTCTATGGCTGAAATAGGAGTAGGGGCTGGGTGAACTGTATATCCACCTTTAGCTTCTATTGTAGGACATAATGGGAGATCAGTAGACTTT—GCAATTTTTTCTTTACATTTAGCTGGTGCTTCATCAATCATAGGAGCTATTAATTTTATTTCTACTATTATTAATATACGATCTTTAGGAATATCTTTTGATAAGGTTCCTTTATTTGTTTGATCCGTTTTAATTACTGCTGTTTTGTTATTACTTTCGTTACCGGTTTTAGCAGGA——————————————————————— | 564 | 2013-10-04 | BOLD:AAB2930 | 2010-07-15 | 112 | NA | 43.8155,-79.167 | GPS | NA | NA | NA | Nearctic | NA | Southern_Great_Lakes_forests | Rouge National Urban Park | NA | Sector 3 | CA | Canada | Ontario | RBINA,DS-RBSS,DS-RPB13,DS-MOB112,DS-MOB113,DS-SOC2014,DS-MYBCA,DS-JALPHA,DS-ROUGENP,DS-ARANCCYH,DS-BBRNUP1,DS-SPCANADA,DS-JUMPGLOB | NA |
Similarly, sampleids or dataset_codes or project_codes can also be used
to fetch data. The data can also be filtered on different parameters
such as Geography, Attributions and DNA Sequence information using the
_filt
arguments available in the function
Downloaded data can then be summarized in differnt ways. Summaries are
generated either on the whole dataset, specific presets (please check
the details section of bold.export()
function in the package manual
for details) or specific columns.
BCDM_data_summary<-bold.data.summarize(bold_df = BCDM_data,
summarize_by = 'presets',
presets = "geography")
#> ── Data Summary ────────────────────────
#> Values
#> Name Piped data
#> Number of rows 1336
#> Number of columns 12
#> _______________________
#> Column type frequency:
#> character 11
#> numeric 1
#> ________________________
#> Group variables None
BCDM_data_summary$summary
Name | Piped data |
Number of rows | 1336 |
Number of columns | 12 |
_______________________ | |
Column type frequency: | |
character | 11 |
numeric | 1 |
________________________ | |
Group variables | None |
Detailed data summary
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
processid | 0 | 1.00 | 10 | 13 | 0 | 1336 | 0 |
sampleid | 0 | 1.00 | 8 | 15 | 0 | 1336 | 0 |
country.ocean | 0 | 1.00 | 6 | 6 | 0 | 1 | 0 |
country_iso | 0 | 1.00 | 2 | 2 | 0 | 1 | 0 |
province.state | 0 | 1.00 | 6 | 25 | 0 | 12 | 0 |
region | 134 | 0.90 | 0 | 35 | 12 | 75 | 0 |
sector | 176 | 0.87 | 5 | 83 | 0 | 232 | 0 |
site | 568 | 0.57 | 0 | 106 | 16 | 179 | 0 |
site_code | 1047 | 0.22 | 12 | 20 | 0 | 37 | 0 |
coord | 0 | 1.00 | 11 | 19 | 0 | 302 | 0 |
coord_source | 461 | 0.65 | 0 | 28 | 91 | 8 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
coord_accuracy | 1335 | 0 | 5 | NA | 5 | 5 | 5 | 5 | 5 | ▁▁▇▁▁ |
A data summary profile containing aggregates and completeness information is provided as a combination of tabular output and visualization
Downloaded data can also be exported to the local machine either as a flat file or as a FASTA file for any third-party sequence analysis tools. The flat file contents can be modified as per user requirements (entire data/specific presets/individual fields).
# Preset dataframe
# bold.export(bold_df = BCDM_data,
# export_type = "preset_df",
# presets = 'taxonomy',
# export_to = "file_path_with_intended_name")
# Unaligned fasta file
# bold.export(bold_df = BCDM_data,
# export_type = "fas",
# cols_for_fas_names = c("bin_uri","genus","species"),
# export_to = "file_path_with_intended_name")
The package also has analyses functions that provide sequence alignment, NJ clustering, biodiversity analysis, occurrence mapping using the downloaded BCDM data. Additionally, these functions also output objects that are commonly used by other R packages (‘sf’ dataframe, occurrence matrix). Please go through the help manual (Link provided above) for detailed usage of all the functions of BOLDConnectR with examples.
BOLDconnectR is able to retrieve data very fast (~100k records in a minute on a fast wired connection).
Citation: Padhye SM, Agda TJA, Agda JRA, Ballesteros-Mejia CL, Ratnasingham S. BOLDconnectR: An R package for interacting with the Barcode of Life Data (BOLD) system.(MS in prep)