Skip to content

biobricks-ai/chemprop-transformer

Repository files navigation

Molecular Biological Similarity with Conditional Variational Autoencoder

Modeling the molecular biological similarity with conditional variational autoencoder. The model is trained on the ChEMBL dataset using BioBricks.

A presentation of this work is available on google drive ChemHarmony and Biosim

Development

  1. install docker and nvidia-docker2
  2. test nvidia-docker:
    docker run --rm --gpus all nvidia/cuda:11.7.1-devel-ubuntu20.04 nvidia-smi
  3. build dockerfile
  4. run dockerfile:
    docker run -p 6515:6515 -v .:/chemsim --rm --gpus all -it --name chemsim biobricks-ai/cvae

Evaluation

We want to evaluate this model using the same benchmarks from the molformer paper and using some new benchmarks for the NIEHS acute inhalation project and Tox24:

  1. SIDER
  2. Tox21
  3. ClinTox
  4. HIV Activity
  5. BACE
  6. CoMPAIT - Collaborative Modeling Project for Acute Inhalational Toxicity

and for regression tasks

  1. QM9 (quantum mechanical properties)
  2. ESOL (solubility from moleculenet)
  3. FreeeSolv (free solvation energy from moleculenet?)
  4. lipophilicity (lipophilicity from moleculenet)
  5. Tox24
Model BBBP Tox21 ClinTox HIV BACE SIDER
RF 71.4 76.9 71.3 78.1 86.7 68.4
SVM 72.9 81.8 66.9 79.2 86.2 68.2
MGCN 85.0 70.7 63.4 73.8 73.4 55.2
D-MPNN 71.2 68.9 90.5 75.0 85.3 63.2
DimeNet - 78.0 76.0 - - 61.5
Hu et al. 70.8 78.7 78.9 80.2 85.9 65.2
N-gram 91.2 76.9 85.5 83.0 87.6 63.2
MolCLR 73.6 79.8 93.2 80.6 89.0 68.0
GraphMVP-C 72.4 74.4 77.5 77.0 81.2 63.9
GeomGCL - 85.0 91.9 - - 64.8
GEM 72.4 78.1 90.1 80.6 85.6 67.2
ChemBERTa 64.3 - 90.6 62.2 - -
MoLFormer-XL 93.7 84.7 94.8 82.2 88.21 69.0
  • Bold indicates the top-performing model.
  • '—' signifies that the values were not reported for the corresponding task.
Model QM9 (MAE) QM8 (MAE) ESOL (RMSE) FreeSolv (RMSE) Lipophilicity (RMSE)
GC 4.3536 0.0148 0.970 1.40 0.655
A-FP 2.6355 0.0282 0.5030 0.736 0.578
MPNN 3.1898 0.0143 0.58 1.150 0.7190
MoLFormer-XL 1.5894 0.0102 0.2787 0.2308 0.5289
  • Bold indicates the top-performing model.

Run service

docker run -p 6515:6515 -v .:/chemsim --rm --gpus all -it --name chemsim biobricks-ai/cvae

curl -X GET "http://localhost:6515/predict?property_token=5042&inchi=InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)"

ssh -Nf -R 12000:localhost:6515 ubuntu@api.insilica.co

curl -X GET "https://api.insilica.co/service/run/chemsim/predict?property_token=5042&inchi=InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)"

References

License

MIT

About

BioSim model with Conditional Variational Autoencoder

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •