Modeling the molecular biological similarity with conditional variational autoencoder. The model is trained on the ChEMBL dataset using BioBricks.
A presentation of this work is available on google drive ChemHarmony and Biosim
- install docker and nvidia-docker2
- test nvidia-docker:
docker run --rm --gpus all nvidia/cuda:11.7.1-devel-ubuntu20.04 nvidia-smi
- build dockerfile
- run dockerfile:
docker run -p 6515:6515 -v .:/chemsim --rm --gpus all -it --name chemsim biobricks-ai/cvae
We want to evaluate this model using the same benchmarks from the molformer paper and using some new benchmarks for the NIEHS acute inhalation project and Tox24:
- SIDER
- Tox21
- ClinTox
- HIV Activity
- BACE
- CoMPAIT - Collaborative Modeling Project for Acute Inhalational Toxicity
and for regression tasks
- QM9 (quantum mechanical properties)
- ESOL (solubility from moleculenet)
- FreeeSolv (free solvation energy from moleculenet?)
- lipophilicity (lipophilicity from moleculenet)
- Tox24
Model | BBBP | Tox21 | ClinTox | HIV | BACE | SIDER |
---|---|---|---|---|---|---|
RF | 71.4 | 76.9 | 71.3 | 78.1 | 86.7 | 68.4 |
SVM | 72.9 | 81.8 | 66.9 | 79.2 | 86.2 | 68.2 |
MGCN | 85.0 | 70.7 | 63.4 | 73.8 | 73.4 | 55.2 |
D-MPNN | 71.2 | 68.9 | 90.5 | 75.0 | 85.3 | 63.2 |
DimeNet | - | 78.0 | 76.0 | - | - | 61.5 |
Hu et al. | 70.8 | 78.7 | 78.9 | 80.2 | 85.9 | 65.2 |
N-gram | 91.2 | 76.9 | 85.5 | 83.0 | 87.6 | 63.2 |
MolCLR | 73.6 | 79.8 | 93.2 | 80.6 | 89.0 | 68.0 |
GraphMVP-C | 72.4 | 74.4 | 77.5 | 77.0 | 81.2 | 63.9 |
GeomGCL | - | 85.0 | 91.9 | - | - | 64.8 |
GEM | 72.4 | 78.1 | 90.1 | 80.6 | 85.6 | 67.2 |
ChemBERTa | 64.3 | - | 90.6 | 62.2 | - | - |
MoLFormer-XL | 93.7 | 84.7 | 94.8 | 82.2 | 88.21 | 69.0 |
- Bold indicates the top-performing model.
- '—' signifies that the values were not reported for the corresponding task.
Model | QM9 (MAE) | QM8 (MAE) | ESOL (RMSE) | FreeSolv (RMSE) | Lipophilicity (RMSE) |
---|---|---|---|---|---|
GC | 4.3536 | 0.0148 | 0.970 | 1.40 | 0.655 |
A-FP | 2.6355 | 0.0282 | 0.5030 | 0.736 | 0.578 |
MPNN | 3.1898 | 0.0143 | 0.58 | 1.150 | 0.7190 |
MoLFormer-XL | 1.5894 | 0.0102 | 0.2787 | 0.2308 | 0.5289 |
- Bold indicates the top-performing model.
docker run -p 6515:6515 -v .:/chemsim --rm --gpus all -it --name chemsim biobricks-ai/cvae
curl -X GET "http://localhost:6515/predict?property_token=5042&inchi=InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)"
ssh -Nf -R 12000:localhost:6515 ubuntu@api.insilica.co
MIT