-
Notifications
You must be signed in to change notification settings - Fork 253
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from sssruhan1/master
python version of pck and visualization
- Loading branch information
Showing
2 changed files
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
from scipy.io import loadmat | ||
from numpy import transpose | ||
import skimage.io as sio | ||
from utils import visualize | ||
import numpy as np | ||
import os | ||
|
||
|
||
detection = loadmat('evaluation/data/detections.mat') | ||
det_idxs = detection['RELEASE_img_index'] | ||
debug = 0 | ||
threshold = 0.5 | ||
SC_BIAS = 0.6 | ||
|
||
pa = [2, 3, 7, 7, 4, 5, 8, 9, 10, 0, 12, 13, 8, 8, 14, 15] | ||
|
||
dict = loadmat('evaluation/data/detections_our_format.mat') | ||
dataset_joints = dict['dataset_joints'] | ||
jnt_missing = dict['jnt_missing'] | ||
pos_pred_src = dict['pos_pred_src'] | ||
pos_gt_src = dict['pos_gt_src'] | ||
headboxes_src = dict['headboxes_src'] | ||
|
||
|
||
|
||
#predictions | ||
model_name = 'hg4' | ||
predfile = 'checkpoint/mpii/' + model_name + '/preds_valid.mat' | ||
preds = loadmat(predfile)['preds'] | ||
pos_pred_src = transpose(preds, [1, 2, 0]) | ||
|
||
|
||
if debug: | ||
|
||
for i in range(len(det_idxs[0])): | ||
anno = mat['RELEASE']['annolist'][0, 0][0][det_idxs[0][i] - 1] | ||
fn = anno['image']['name'][0, 0][0] | ||
imagePath = 'data/mpii/images/' + fn | ||
oriImg = sio.imread(imagePath) | ||
pred = pos_pred_src[:, :, i] | ||
visualize(oriImg, pred, pa) | ||
|
||
|
||
head = np.where(dataset_joints == 'head')[1][0] | ||
lsho = np.where(dataset_joints == 'lsho')[1][0] | ||
lelb = np.where(dataset_joints == 'lelb')[1][0] | ||
lwri = np.where(dataset_joints == 'lwri')[1][0] | ||
lhip = np.where(dataset_joints == 'lhip')[1][0] | ||
lkne = np.where(dataset_joints == 'lkne')[1][0] | ||
lank = np.where(dataset_joints == 'lank')[1][0] | ||
|
||
rsho = np.where(dataset_joints == 'rsho')[1][0] | ||
relb = np.where(dataset_joints == 'relb')[1][0] | ||
rwri = np.where(dataset_joints == 'rwri')[1][0] | ||
rkne = np.where(dataset_joints == 'rkne')[1][0] | ||
rank = np.where(dataset_joints == 'rank')[1][0] | ||
rhip = np.where(dataset_joints == 'rhip')[1][0] | ||
|
||
jnt_visible = 1 - jnt_missing | ||
uv_error = pos_pred_src - pos_gt_src | ||
uv_err = np.linalg.norm(uv_error, axis=1) | ||
headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :] | ||
headsizes = np.linalg.norm(headsizes, axis=0) | ||
headsizes *= SC_BIAS | ||
scale = np.multiply(headsizes, np.ones((len(uv_err), 1))) | ||
scaled_uv_err = np.divide(uv_err, scale) | ||
scaled_uv_err = np.multiply(scaled_uv_err, jnt_visible) | ||
jnt_count = np.sum(jnt_visible, axis=1) | ||
less_than_threshold = np.multiply((scaled_uv_err < threshold), jnt_visible) | ||
PCKh = np.divide(100. * np.sum(less_than_threshold, axis=1), jnt_count) | ||
|
||
|
||
# save | ||
rng = np.arange(0, 0.5, 0.01) | ||
pckAll = np.zeros((len(rng), 16)) | ||
|
||
for r in range(len(rng)): | ||
threshold = rng[r] | ||
less_than_threshold = np.multiply(scaled_uv_err < threshold, jnt_visible) | ||
pckAll[r, :] = np.divide(100.*np.sum(less_than_threshold, axis=1), jnt_count) | ||
|
||
name = predfile.split(os.sep)[-1] | ||
PCKh = np.ma.array(PCKh, mask=False) | ||
PCKh.mask[6:7] = True | ||
print("Model, Head, Shoulder, Elbow, Wrist, Hip , Knee , Ankle , Mean") | ||
print('{:s} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}'.format(model_name, PCKh[head], 0.5 * (PCKh[lsho] + PCKh[rsho])\ | ||
, 0.5 * (PCKh[lelb] + PCKh[relb]),0.5 * (PCKh[lwri] + PCKh[rwri]), 0.5 * (PCKh[lhip] + PCKh[rhip]), 0.5 * (PCKh[lkne] + PCKh[rkne]) \ | ||
, 0.5 * (PCKh[lank] + PCKh[rank]), np.mean(PCKh))) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
|
||
def visualize(oriImg, points, pa): | ||
import matplotlib | ||
import cv2 as cv | ||
import matplotlib.pyplot as plt | ||
import math | ||
|
||
fig = matplotlib.pyplot.gcf() | ||
# fig.set_size_inches(12, 12) | ||
|
||
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], | ||
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], | ||
[170,0,255],[255,0,255]] | ||
canvas = oriImg | ||
stickwidth = 4 | ||
x = points[:, 0] | ||
y = points[:, 1] | ||
|
||
for n in range(len(x)): | ||
for child in range(len(pa)): | ||
if pa[child] is 0: | ||
continue | ||
|
||
x1 = x[pa[child] - 1] | ||
y1 = y[pa[child] - 1] | ||
x2 = x[child] | ||
y2 = y[child] | ||
|
||
cv.line(canvas, (x1, y1), (x2, y2), colors[child], 8) | ||
|
||
|
||
plt.imshow(canvas[:, :, [2, 1, 0]]) | ||
fig = matplotlib.pyplot.gcf() | ||
fig.set_size_inches(12, 12) | ||
|
||
from time import gmtime, strftime | ||
import os | ||
directory = 'data/mpii/result/test_images' | ||
if not os.path.exists(directory): | ||
os.makedirs(directory) | ||
|
||
fn = os.path.join(directory, strftime("%Y-%m-%d-%H_%M_%S", gmtime()) + '.jpg') | ||
|
||
plt.savefig(fn) |