Skip to content

Visualize COVID-19 country-level data of cases, mobility and interventions

License

Notifications You must be signed in to change notification settings

avallecam/covid19viz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

covid19viz

Lifecycle: experimental CRAN status DOI

The goal of covid19viz is to access and summarize WHO sitreps for covid-19 in simple graphics.

This package works using two data repositories:

Additionally, it imports external data sources like:

  • Google Mobility Reports. View.

  • ACAPS data on #COVID19 Government Measures Dataset. View.

  • UNESCO COVID-19 Impact on Education. View.

Installation

You can install the development version of covid19viz using:

if(!require("remotes")) install.packages("remotes")
remotes::install_github("avallecam/covid19viz")

Quick Examples

Import and visualize JHU collection

library(covid19viz)
library(tidyverse)

#import all data at once
jhu_sitrep_peru <- jhu_sitrep_all_sources(country_region="Peru")

jhu_sitrep_peru
#> # A tibble: 3 x 4
#>   country_region source    data_filter        sum_data
#>   <chr>          <chr>     <list>                <dbl>
#> 1 Peru           confirmed <tibble [242 x 7]>   756412
#> 2 Peru           deaths    <tibble [242 x 7]>    31283
#> 3 Peru           recovered <tibble [242 x 7]>   594513

#transform to tidy format
jhu_sitrep_peru %>% 
  jhu_sitrep_all_sources_tidy() %>% 
  arrange(desc(confirmed_cumulative)) %>% 
  glimpse()
#> Rows: 242
#> Columns: 8
#> $ country_region       <chr> "Peru", "Peru", "Peru", "Peru", "Peru", "...
#> $ date                 <date> 2020-09-19, 2020-09-18, 2020-09-17, 2020...
#> $ confirmed_cumulative <dbl> 756412, 750098, 744400, 738020, 733860, 7...
#> $ deaths_cumulative    <dbl> 31283, 31146, 31051, 30927, 30812, 30710,...
#> $ recovered_cumulative <dbl> 594513, 594513, 594513, 580753, 573364, 5...
#> $ confirmed_incidence  <dbl> 6314, 5698, 6380, 4160, 4241, 6787, 6162,...
#> $ deaths_incidence     <dbl> 137, 95, 124, 115, 102, 184, 56, 126, 108...
#> $ recovered_incidence  <dbl> 0, 0, 13760, 7389, 6568, 7475, 0, 14576, ...
jhu_sitrep_country_report(country_region = "Peru")

Import more external data sources

  • Google Mobility Reports. View.
  • ACAPS data on #COVID19 Government Measures Dataset. View.
  • UNESCO COVID-19 Impact on Education. View.
library(covid19viz)
library(tidyverse)

# google mobility reports
# global
read_google_global() %>% glimpse()
#> Rows: 2,441,517
#> Columns: 14
#> $ country_region_code                                <chr> "AE", "AE", "AE", ...
#> $ country_region                                     <chr> "United Arab Emira...
#> $ sub_region_1                                       <chr> NA, NA, NA, NA, NA...
#> $ sub_region_2                                       <lgl> NA, NA, NA, NA, NA...
#> $ metro_area                                         <lgl> NA, NA, NA, NA, NA...
#> $ iso_3166_2_code                                    <chr> NA, NA, NA, NA, NA...
#> $ census_fips_code                                   <lgl> NA, NA, NA, NA, NA...
#> $ date                                               <date> 2020-02-15, 2020-...
#> $ retail_and_recreation_percent_change_from_baseline <dbl> 0, 1, -1, -2, -2, ...
#> $ grocery_and_pharmacy_percent_change_from_baseline  <dbl> 4, 4, 1, 1, 0, 1, ...
#> $ parks_percent_change_from_baseline                 <dbl> 5, 4, 5, 5, 4, 6, ...
#> $ transit_stations_percent_change_from_baseline      <dbl> 0, 1, 1, 0, -1, 1,...
#> $ workplaces_percent_change_from_baseline            <dbl> 2, 2, 2, 2, 2, 1, ...
#> $ residential_percent_change_from_baseline           <dbl> 1, 1, 1, 1, 1, 1, ...

# regional
# first: select country ISO
read_google_region_list()
#> # A tibble: 135 x 4
#>     country_iso Name                                 Length Date               
#>     <chr>       <chr>                                 <dbl> <dttm>             
#>   1 AE          2020_AE_Region_Mobility_Report.csv   121354 2020-09-13 15:27:00
#>   2 AF          2020_AF_Region_Mobility_Report.csv    20553 2020-09-13 15:27:00
#>   3 AG          2020_AG_Region_Mobility_Report.csv    57484 2020-09-13 15:27:00
#>   4 AO          2020_AO_Region_Mobility_Report.csv    58954 2020-09-13 15:27:00
#>   5 AR          2020_AR_Region_Mobility_Report.csv  6932241 2020-09-13 15:27:00
#>   6 AT          2020_AT_Region_Mobility_Report.csv  1402047 2020-09-13 15:27:00
#>   7 AU          2020_AU_Region_Mobility_Report.csv  4329094 2020-09-13 15:27:00
#>   8 AW          2020_AW_Region_Mobility_Report.csv     9967 2020-09-13 15:27:00

# second: read specific country data
peru <- read_google_region_country(country_iso = "PE")
peru %>% glimpse()
#> Rows: 28,194
#> Columns: 14
#> $ country_region_code                                <chr> "PE", "PE", "PE", ...
#> $ country_region                                     <chr> "Peru", "Peru", "P...
#> $ sub_region_1                                       <chr> NA, NA, NA, NA, NA...
#> $ sub_region_2                                       <chr> NA, NA, NA, NA, NA...
#> $ metro_area                                         <lgl> NA, NA, NA, NA, NA...
#> $ iso_3166_2_code                                    <chr> NA, NA, NA, NA, NA...
#> $ census_fips_code                                   <lgl> NA, NA, NA, NA, NA...
#> $ date                                               <date> 2020-02-15, 2020-...
#> $ retail_and_recreation_percent_change_from_baseline <dbl> 4, 1, 0, 0, 0, 0, ...
#> $ grocery_and_pharmacy_percent_change_from_baseline  <dbl> 1, 0, 1, 0, -1, -1...
#> $ parks_percent_change_from_baseline                 <dbl> 3, -2, 1, 0, 0, -1...
#> $ transit_stations_percent_change_from_baseline      <dbl> 3, 2, 2, 1, 0, 3, ...
#> $ workplaces_percent_change_from_baseline            <dbl> 0, 0, 1, 1, 1, 0, ...
#> $ residential_percent_change_from_baseline           <dbl> -1, 0, 0, 0, 1, 0,...

peru %>% count(sub_region_1)
#> # A tibble: 27 x 2
#>    sub_region_1      n
#>    <chr>         <int>
#>  1 Amazonas       1050
#>  2 Ancash         1871
#>  3 Apurimac        816
#>  4 Arequipa       1470
#>  5 Ayacucho       1050
#>  6 Cajamarca      1850
#>  7 Callao Region   210
#>  8 Cusco          1668
#>  9 Huancavelica    630
#> 10 Huanuco         630
#> # ... with 17 more rows

# acaps data
read_acaps_governments() %>% glimpse()
#> Rows: 193
#> Columns: 8
#> $ Country_name         <chr> "Afghanistan", "Albania", "Algeria", "Angola",...
#> $ ISO3                 <chr> "AFG", "ALB", "DZA", "AGO", "ATG", "ARG", "ARM...
#> $ REGION               <chr> "Asia", "Europe", "Africa", "Africa", "America...
#> $ Measure_taxonomy     <chr> "Schools closure ", "Border checks ", "Border ...
#> $ Measure_Category     <chr> "Social distancing", "Movement restrictions", ...
#> $ SOURCE_TYPE          <chr> "Government", "Media", "UN", "Other organisati...
#> $ Enforcement_taxonomy <chr> "Fines", "Arrest/Detention", "Deportation", "R...
#> $ Log_type             <chr> "Introduction / extension of measures", "Phase...

# unesco education data
read_unesco_education() %>% glimpse()
#> Rows: 41,714
#> Columns: 5
#> $ Date    <chr> "17/02/2020", "17/02/2020", "18/02/2020", "...
#> $ ISO     <chr> "CHN", "MNG", "CHN", "MNG", "CHN", "MNG", "...
#> $ Country <chr> "China", "Mongolia", "China", "Mongolia", "...
#> $ Status  <chr> "Partially open", "Closed due to COVID-19",...
#> $ Note    <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...

Import initial stages of the WHO sitreps

library(covid19viz)

# paste last update available at
# https://github.com/fkrauer/COVID-19
update <- "2020-03-10"

# apply
who_sitrep_country_report(
  update = update,
  country_region = "Brazil")