-
Notifications
You must be signed in to change notification settings - Fork 75
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
new file: html/dsm/datautils.html new file: html/dsm/dsm_api.html new file: html/dsm/dsm_torch.html new file: html/dsm/index.html new file: html/dsm/losses.html new file: html/dsm/utilities.html
- Loading branch information
1 parent
0e060f0
commit 4e35898
Showing
7 changed files
with
3,026 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
<!doctype html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> | ||
<meta name="generator" content="pdoc 0.9.1" /> | ||
<title>dsm.datasets API documentation</title> | ||
<meta name="description" content="Utility functions to load standard datasets to train and evaluate the | ||
Deep Survival Machines models." /> | ||
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin> | ||
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin> | ||
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin> | ||
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> | ||
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> | ||
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> | ||
<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML" integrity="sha256-kZafAc6mZvK3W3v1pHOcUix30OHQN6pU/NO2oFkqZVw=" crossorigin></script> | ||
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script> | ||
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script> | ||
</head> | ||
<body> | ||
<main> | ||
<article id="content"> | ||
<header> | ||
<h1 class="title">Module <code>dsm.datasets</code></h1> | ||
</header> | ||
<section id="section-intro"> | ||
<p>Utility functions to load standard datasets to train and evaluate the | ||
Deep Survival Machines models.</p> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python"># coding=utf-8 | ||
# Copyright 2020 Chirag Nagpal, Auton Lab. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Utility functions to load standard datasets to train and evaluate the | ||
Deep Survival Machines models. | ||
""" | ||
|
||
|
||
import io | ||
import pkgutil | ||
|
||
import pandas as pd | ||
import numpy as np | ||
|
||
from sklearn.impute import SimpleImputer | ||
from sklearn.preprocessing import StandardScaler | ||
|
||
def increase_censoring(e, t, p): | ||
|
||
uncens = np.where(e == 1)[0] | ||
mask = np.random.choice([False, True], len(uncens), p=[1-p, p]) | ||
toswitch = uncens[mask] | ||
|
||
e[toswitch] = 0 | ||
t_ = t[toswitch] | ||
|
||
newt = [] | ||
for t__ in t_: | ||
newt.append(np.random.uniform(1, t__)) | ||
t[toswitch] = newt | ||
|
||
return e, t | ||
|
||
def _load_pbc_dataset(): | ||
"""Helper function to load and preprocess the PBC dataset | ||
|
||
The Primary biliary cirrhosis (PBC) Dataset [1] is well known | ||
dataset for evaluating survival analysis models with time | ||
dependent covariates. | ||
|
||
References | ||
---------- | ||
[1] Fleming, Thomas R., and David P. Harrington. Counting processes and | ||
survival analysis. Vol. 169. John Wiley & Sons, 2011. | ||
|
||
""" | ||
|
||
raise NotImplementedError('') | ||
|
||
def _load_support_dataset(): | ||
"""Helper function to load and preprocess the SUPPORT dataset. | ||
|
||
The SUPPORT Dataset comes from the Vanderbilt University study | ||
to estimate survival for seriously ill hospitalized adults [1]. | ||
|
||
Please refer to http://biostat.mc.vanderbilt.edu/wiki/Main/SupportDesc. | ||
for the original datasource. | ||
|
||
References | ||
---------- | ||
[1]: Knaus WA, Harrell FE, Lynn J et al. (1995): The SUPPORT prognostic | ||
model: Objective estimates of survival for seriously ill hospitalized | ||
adults. Annals of Internal Medicine 122:191-203. | ||
|
||
""" | ||
|
||
data = pkgutil.get_data(__name__, 'datasets/support2.csv') | ||
data = pd.read_csv(io.BytesIO(data)) | ||
x1 = data[['age', 'num.co', 'meanbp', 'wblc', 'hrt', 'resp', 'temp', | ||
'pafi', 'alb', 'bili', 'crea', 'sod', 'ph', 'glucose', 'bun', | ||
'urine', 'adlp', 'adls']] | ||
|
||
catfeats = ['sex', 'dzgroup', 'dzclass', 'income', 'race', 'ca'] | ||
x2 = pd.get_dummies(data[catfeats]) | ||
|
||
x = np.concatenate([x1, x2], axis=1) | ||
t = data['d.time'].values | ||
e = data['death'].values | ||
|
||
x = SimpleImputer(missing_values=np.nan, strategy='mean').fit_transform(x) | ||
x = StandardScaler().fit_transform(x) | ||
|
||
remove = ~np.isnan(t) | ||
return x[remove], t[remove], e[remove] | ||
|
||
|
||
def load_dataset(dataset='SUPPORT'): | ||
"""Helper function to load datasets to test Survival Analysis models. | ||
|
||
Parameters | ||
---------- | ||
dataset: str | ||
The choice of dataset to load. Currently implemented is 'SUPPORT'. | ||
|
||
Returns | ||
---------- | ||
tuple: (np.ndarray, np.ndarray, np.ndarray) | ||
A tuple of the form of (x, t, e) where x, t, e are the input covariates, | ||
event times and the censoring indicators respectively. | ||
|
||
""" | ||
|
||
if dataset == 'SUPPORT': | ||
return _load_support_dataset() | ||
else: | ||
return NotImplementedError('Dataset '+dataset+' not implemented.')</code></pre> | ||
</details> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
<h2 class="section-title" id="header-functions">Functions</h2> | ||
<dl> | ||
<dt id="dsm.datasets.increase_censoring"><code class="name flex"> | ||
<span>def <span class="ident">increase_censoring</span></span>(<span>e, t, p)</span> | ||
</code></dt> | ||
<dd> | ||
<div class="desc"></div> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">def increase_censoring(e, t, p): | ||
|
||
uncens = np.where(e == 1)[0] | ||
mask = np.random.choice([False, True], len(uncens), p=[1-p, p]) | ||
toswitch = uncens[mask] | ||
|
||
e[toswitch] = 0 | ||
t_ = t[toswitch] | ||
|
||
newt = [] | ||
for t__ in t_: | ||
newt.append(np.random.uniform(1, t__)) | ||
t[toswitch] = newt | ||
|
||
return e, t</code></pre> | ||
</details> | ||
</dd> | ||
<dt id="dsm.datasets.load_dataset"><code class="name flex"> | ||
<span>def <span class="ident">load_dataset</span></span>(<span>dataset='SUPPORT')</span> | ||
</code></dt> | ||
<dd> | ||
<div class="desc"><p>Helper function to load datasets to test Survival Analysis models.</p> | ||
<h2 id="parameters">Parameters</h2> | ||
<dl> | ||
<dt><strong><code>dataset</code></strong> : <code>str</code></dt> | ||
<dd>The choice of dataset to load. Currently implemented is 'SUPPORT'.</dd> | ||
</dl> | ||
<h2 id="returns">Returns</h2> | ||
<dl> | ||
<dt><strong><code>tuple</code></strong> : <code>(np.ndarray, np.ndarray, np.ndarray)</code></dt> | ||
<dd>A tuple of the form of (x, t, e) where x, t, e are the input covariates, | ||
event times and the censoring indicators respectively.</dd> | ||
</dl></div> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">def load_dataset(dataset='SUPPORT'): | ||
"""Helper function to load datasets to test Survival Analysis models. | ||
|
||
Parameters | ||
---------- | ||
dataset: str | ||
The choice of dataset to load. Currently implemented is 'SUPPORT'. | ||
|
||
Returns | ||
---------- | ||
tuple: (np.ndarray, np.ndarray, np.ndarray) | ||
A tuple of the form of (x, t, e) where x, t, e are the input covariates, | ||
event times and the censoring indicators respectively. | ||
|
||
""" | ||
|
||
if dataset == 'SUPPORT': | ||
return _load_support_dataset() | ||
else: | ||
return NotImplementedError('Dataset '+dataset+' not implemented.')</code></pre> | ||
</details> | ||
</dd> | ||
</dl> | ||
</section> | ||
<section> | ||
</section> | ||
</article> | ||
<nav id="sidebar"> | ||
<h1>Index</h1> | ||
<div class="toc"> | ||
<ul></ul> | ||
</div> | ||
<ul id="index"> | ||
<li><h3>Super-module</h3> | ||
<ul> | ||
<li><code><a title="dsm" href="index.html">dsm</a></code></li> | ||
</ul> | ||
</li> | ||
<li><h3><a href="#header-functions">Functions</a></h3> | ||
<ul class=""> | ||
<li><code><a title="dsm.datasets.increase_censoring" href="#dsm.datasets.increase_censoring">increase_censoring</a></code></li> | ||
<li><code><a title="dsm.datasets.load_dataset" href="#dsm.datasets.load_dataset">load_dataset</a></code></li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</nav> | ||
</main> | ||
<footer id="footer"> | ||
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.9.1</a>.</p> | ||
</footer> | ||
</body> | ||
</html> |
Oops, something went wrong.