AIOStack automatically discovers AI components you didn't know existed and ties each to an owner. No code changes required. Runs in-cluster via eBPF.
Discovery
- Shadow AI across namespaces/clusters
- AI agents, MCP servers/clients, LLM endpoints, Vector DBs
- Orphaned/unused (“zombie”) AI services
Monitoring & Analytics
- Model/API calls (OpenAI, Anthropic, Gemini, etc.)
- Model downloads and runtime inventory
- Cost & usage insights
Security & Compliance
- Sensitive-data exposure cues and risky egress paths
- Evidence for investigations with owner attribution (Pods/Deployments/ServiceAccounts)
- Kubernetes 1.29+ with eBPF support
(EKS, GKE, AKS already satisfy this) - Linux kernel 5.15+
- Helm 3.x
- kubectl configured
- Sign up at app.aurva.ai (takes 30 seconds)
- Copy your credentials from the email sent to you:
- Company ID
- AIOStack Validation Key
Step 1: Configure Your Credentials
helm repo add aiostack https://charts.aurva.ai/
helm repo update
# Extract the default values file
helm show values aiostack/aiostack > values.yaml
Edit values.yaml
and set your credentials/placeholders:
outpost:
env:
- name: COMPANY_ID
value: "<YOUR_COMPANY_ID>"
- name: AIOSTACK_VALIDATION_KEY
value: "<YOUR_VALIDATION_KEY>"
observer:
env:
- name: IS_OUTPOST_URL_SECURE
value: "false"
Optional: pin to the newest components by setting version: latest
:
observer:
version: latest
...
outpost:
version: latest
...
Step 2: Deploy to Your Cluster
# Create namespace
kubectl create namespace aiostack
# Install with your configured values
helm install myaiostack aiostack/aiostack --namespace aiostack --values values.yaml
Step 3: Verify Installation
# Check if pods are running
kubectl get pods -n aiostack
Step 4: View the Dashboard
That's it! You can now access your Shadow AI inventory at app.aurva.io and login with your credentials (your username is the email you signed up with).
Platform | Status |
---|---|
EKS (AWS) | ✅ Full |
GKE (Google) | ✅ Full |
Kind/Minikube | ✅ Dev only |
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Applications │───▶│ eBPF Agents │───▶│ Data Pipeline │
│ │ │ │ │ │
│ • Python ML │ │ • Syscall hooks │ │ • Classification│
│ • Node.js AI │ │ • Network trace │ │ • Enrichment │
│ • Java services │ │ • Process trace │ │ • Aggregation │
│ • Go binaries │ │ • File I/O trace │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
┌─────────────────┐ ┌──────────────────┐ │
│ Dashboards │◀───│ ClickHouse │◀────────────┘
│ │ │ │
│ • AIOStack UI │ │ • Time-series DB │
│ • Web Console │ │ • 7-30 day │
│ • REST APIs │ │ retention │
└─────────────────┘ └──────────────────┘
- 📖 Documentation: https://aurva.ai/docs/home
- ⚙️ Detailed Installation Guide - https://aurva.ai/docs/installation/steps
- 🐛 Bug Reports: GitHub Issues
- 📧 Support: support@aurva.io
- eBPF programs use only required, minimal capabilities.
- Aligned with Kubernetes Security Contexts and Pod Security Standards.
Reporting Vulnerabilities: support@aurva.io
Security Audit: Results will be continously published (as available).
- No TLS key access required; observability happens at syscall level.
- In-cluster operation. Data remains in your environment.
- Metadata Only:
- Request/response bodies are not stored.
- Sensitive values are classified in runtime.
AIOstack is open source.
Apache License 2.0 - see LICENSE for details.
Made with ❤️ by Aurva "See what others can't. Secure what others miss."