Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix a typo for [sic] FuturesExt trait #930

Merged
merged 1 commit into from
Jan 7, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/src/overview/std-and-library-futures.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@ Rust has two kinds of types commonly referred to as `Future`:

The future defined in the [futures-rs](https://docs.rs/futures/0.3/futures/prelude/trait.Future.html) crate was the original implementation of the type. To enable the `async/await` syntax, the core Future trait was moved into Rust’s standard library and became `std::future::Future`. In some sense, the `std::future::Future` can be seen as a minimal subset of `futures::future::Future`.

It is critical to understand the difference between `std::future::Future` and `futures::future::Future`, and the approach that `async-std` takes towards them. In itself, `std::future::Future` is not something you want to interact with as a user—except by calling `.await` on it. The inner workings of `std::future::Future` are mostly of interest to people implementing `Future`. Make no mistake—this is very useful! Most of the functionality that used to be defined on `Future` itself has been moved to an extension trait called [`FuturesExt`](https://docs.rs/futures/0.3/futures/future/trait.FutureExt.html). From this information, you might be able to infer that the `futures` library serves as an extension to the core Rust async features.
It is critical to understand the difference between `std::future::Future` and `futures::future::Future`, and the approach that `async-std` takes towards them. In itself, `std::future::Future` is not something you want to interact with as a user—except by calling `.await` on it. The inner workings of `std::future::Future` are mostly of interest to people implementing `Future`. Make no mistake—this is very useful! Most of the functionality that used to be defined on `Future` itself has been moved to an extension trait called [`FutureExt`](https://docs.rs/futures/0.3/futures/future/trait.FutureExt.html). From this information, you might be able to infer that the `futures` library serves as an extension to the core Rust async features.

In the same tradition as `futures`, `async-std` re-exports the core `std::future::Future` type. You can actively opt into the extensions provided by the `futures` crate by adding it to your `Cargo.toml` and importing `FuturesExt`.
In the same tradition as `futures`, `async-std` re-exports the core `std::future::Future` type. You can actively opt into the extensions provided by the `futures` crate by adding it to your `Cargo.toml` and importing `FutureExt`.

## Interfaces and Stability

Expand Down