-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #167 from aadler/Patch-Fix-Test-Banana
Completely rewrite and greatly expand the banana tests.
- Loading branch information
Showing
3 changed files
with
303 additions
and
210 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
# Copyright (C) 2024 Avraham Adler. All Rights Reserved. | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
# | ||
# File: test-Rosebbrock-banana | ||
# Author: Avraham Adler | ||
# Date: 25 June 2024 | ||
# | ||
# Complete rewrite of the current Rosenbrock banana tests. This also helps test | ||
# the accuracy of various algorithms. | ||
# | ||
# Changelog: | ||
# 2024-06-25: Complete rewrite of existing (inefficient) tests. Also tests | ||
# most of the exposed algorithms. See the comments here and | ||
# https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/ for | ||
# more details. | ||
# | ||
|
||
library(nloptr) | ||
tol <- sqrt(.Machine$double.eps) | ||
|
||
# Rosenbrock banana function (rbf) | ||
rbf <- function(x) {(1 - x[1]) ^ 2 + 100 * (x[2] - x[1] ^ 2) ^ 2} | ||
|
||
# Analytic gradient for rbf | ||
rbfgr <- function(x) {c(-2 * (1 - x[1]) - 400 * x[1] * (x[2] - x[1] ^ 2), | ||
200 * (x[2] - x[1] ^ 2))} | ||
|
||
# Used options | ||
opts <- list(ftol_rel = 1e-12, xtol_rel = 1e-12, print_level = 0, maxeval = 5e4) | ||
|
||
# Known optimium of 0 occurs at (1, 1) | ||
rbfOptVal <- 0 | ||
rbfOptLoc <- c(1, 1) | ||
|
||
# Initial values | ||
x0 <- c(-1.2, 1.3) | ||
|
||
# Local Gradient-Based Algorithms | ||
## LBFGS (also tests seperate and combined function/gradient calls). | ||
|
||
opts$algorithm <- "NLOPT_LD_LBFGS" | ||
|
||
# Test passing function and gradient separately. | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Test passing function and gradient in same function call. | ||
rbfComplete <- function(x) { | ||
list(objective = rbf(x), gradient = rbfgr(x)) | ||
} | ||
|
||
testRes <- nloptr(x0 = x0, eval_f = rbfComplete, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## MMA | ||
opts$algorithm <- "NLOPT_LD_MMA" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## CCSAQ | ||
opts$algorithm <- "NLOPT_LD_CCSAQ" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## SLSQP | ||
opts$algorithm <- "NLOPT_LD_SLSQP" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## Preconditioned truncated Newton | ||
opts$algorithm <- "NLOPT_LD_TNEWTON" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_LD_TNEWTON_RESTART" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_LD_TNEWTON_PRECOND" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_LD_TNEWTON_PRECOND_RESTART" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## Shifted limited-memory variable-metric | ||
opts$algorithm <- "NLOPT_LD_VAR2" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = 1e-7) | ||
|
||
opts$algorithm <- "NLOPT_LD_VAR1" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Local Derivative-Free Algorithms | ||
## COBYLA | ||
opts$algorithm <- "NLOPT_LN_COBYLA" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## BOBYQA | ||
opts$algorithm <- "NLOPT_LN_BOBYQA" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## NEWUOA | ||
opts$algorithm <- "NLOPT_LN_NEWUOA" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## PRAXIS | ||
opts$algorithm <- "NLOPT_LN_PRAXIS" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## Nelder-Mead Simplex | ||
opts$algorithm <- "NLOPT_LN_NELDERMEAD" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## Sbplx | ||
opts$algorithm <- "NLOPT_LN_SBPLX" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Global Algorithms | ||
lb <- c(-3, -3) | ||
ub <- c(3, 3) | ||
|
||
## StoGo | ||
## StoGo passes on many platforms but fails MISERABLE (Inf???) on others. Note | ||
## that here and disable the tests for now. | ||
# opts$algorithm <- "NLOPT_GD_STOGO" | ||
# testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, lb = lb, ub = ub, | ||
# opts = opts) | ||
# | ||
# expect_equal(testRes$objective, rbfOptVal, tolerance = 1e-4) | ||
# expect_equal(testRes$solution, rbfOptLoc, tolerance = 1e-4) | ||
# | ||
# opts$algorithm <- "NLOPT_GD_STOGO_RAND" | ||
# testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, lb = lb, ub = ub, | ||
# opts = opts) | ||
# | ||
# expect_equal(testRes$objective, rbfOptVal, tolerance = 1e-4) | ||
# expect_equal(testRes$solution, rbfOptLoc, tolerance = 1e-4) | ||
|
||
## ISRES | ||
opts$population <- 100 | ||
opts$ranseed <- 2718L | ||
opts$algorithm <- "NLOPT_GN_ISRES" | ||
|
||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
## Controlled Random Search (with ranseed testing) | ||
opts$algorithm <- "NLOPT_GN_CRS2_LM" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Different random seed | ||
opts$ranseed <- 3141L | ||
testRes2 <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Same random seed | ||
opts$ranseed <- 2718L | ||
testRes3 <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Results of different random seeds should differ. | ||
expect_false(identical(testRes$objective, testRes2$objective)) | ||
expect_false(identical(testRes$solution, testRes2$solution)) | ||
|
||
# Results of same random seeds should be the same. | ||
expect_identical(testRes$objective, testRes3$objective) | ||
expect_identical(testRes$solution, testRes3$solution) | ||
|
||
## DIRECT | ||
opts$algorithm <- "NLOPT_GN_DIRECT_L" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
# expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
# expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_GN_DIRECT_NOSCAL" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_GN_DIRECT_L_NOSCAL" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_GN_DIRECT_L_RAND_NOSCAL" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_GN_ORIG_DIRECT_L" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# The follwing versions converge to the wrong answer; see | ||
# https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#direct-and-direct-l | ||
# in that the rescaling may be faulty for this particular problem. | ||
opts$algorithm <- "NLOPT_GN_DIRECT" | ||
expect_stdout(nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts)) | ||
|
||
opts$algorithm <- "NLOPT_GN_ORIG_DIRECT" | ||
expect_stdout(nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts)) | ||
|
||
## ESCH - does not converge in 1M iterations so just test for output. Probably | ||
## needs MUCH tighter bounds. | ||
opts$algorithm <- "NLOPT_GN_ESCH" | ||
expect_stdout(nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts)) | ||
|
||
## MLSL (Multi-Level Single-Linkage) | ||
# Use LBGFS as local search algorithm | ||
opts$local_opts <- list(algorithm = "NLOPT_LD_LBFGS", xtol_rel = 1e-9) | ||
# Need to set lower evaluation cap since this is nested global/local | ||
oldmaxeval <- opts$maxeval | ||
opts$maxeval <- 1000 | ||
|
||
# Gradient-based | ||
opts$algorithm <- "NLOPT_GD_MLSL" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, lb = lb, ub = ub, | ||
opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
opts$algorithm <- "NLOPT_GD_MLSL_LDS" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, eval_grad_f = rbfgr, lb = lb, ub = ub, | ||
opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = tol) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = tol) | ||
|
||
# Derivative-free | ||
opts$local_opts <- list(algorithm = "NLOPT_LN_NELDERMEAD", xtol_rel = 1e-12) | ||
opts$maxeval <- 10000 | ||
|
||
# Need lower tolerance (or MANY more evaluations) without gradient information. | ||
opts$algorithm <- "NLOPT_GN_MLSL" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = 1e-5) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = 1e-5) | ||
|
||
opts$algorithm <- "NLOPT_GN_MLSL_LDS" | ||
testRes <- nloptr(x0 = x0, eval_f = rbf, lb = lb, ub = ub, opts = opts) | ||
|
||
expect_equal(testRes$objective, rbfOptVal, tolerance = 1e-5) | ||
expect_equal(testRes$solution, rbfOptLoc, tolerance = 1e-5) |
Oops, something went wrong.