Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add basic implementation of VectorSearch Step and KnowledgeBases #1006

Open
wants to merge 8 commits into
base: develop
Choose a base branch
from

Conversation

davidberenstein1957
Copy link
Member

@davidberenstein1957 davidberenstein1957 commented Sep 29, 2024

  • went for lancedb because it works in memory.
  • @frascuchon as follow up we can consider adding argilla based on your vector search PR :)

Do vector search using a KnowledgeBase and integrated Embeddings model.

from distilabel.embeddings import SentenceTransformerEmbeddings
from distilabel.knowledge_bases.lancedb import LanceDB
from distilabel.steps.knowledge_bases.vector_search import VectorSearch

embedding = SentenceTransformerEmbeddings(
    model="mixedbread-ai/mxbai-embed-large-v1",
)

knowledge_base = LanceDB(
    uri="data/sample-lancedb",
    table_name="my_table",
)

vector_search = VectorSearch(
    knowledge_base=knowledge_base,
    embeddings=embedding,
    n_retrieved_documents=5
)

vector_search.load()
result = next(vector_search.process([{"text": "Hello, how are you?"}]))
# [{
#   'text': 'Hello, how are you?',
#   'embedding': [0.06209656596183777, -0.015797119587659836, ...],
#   'knowledge_base_col_1': [10.0],
#   'knowledge_base_col_2': ['foo']
# }]

Do vector search using a KnowledgeBase and a pre-computed query column.

from distilabel.embeddings import SentenceTransformerEmbeddings
from distilabel.knowledge_bases.lancedb import LanceDB
from distilabel.steps.knowledge_bases.vector_search import VectorSearch

knowledge_base = LanceDB(
    uri="data/sample-lancedb",
    table_name="my_table",
)

vector_search = VectorSearch(
    knowledge_base=knowledge_base,
    n_retrieved_documents=5
)

vector_search.load()
result = next(embedding_generation.process([{'embedding': [0.06209656596183777, -0.015797119587659836, ...]}]))
# [{'embedding': [0.06209656596183777, -0.015797119587659836, ...], "knowledge_base_col_1": [10.0], "knowledge_base_col_2": ["foo"]}]

Or with Argilla

import os

from distilabel.knowledge_bases.argilla import ArgillaKnowledgeBase
from distilabel.steps.knowledge_bases.vector_search import VectorSearch

knowledge_base = ArgillaKnowledgeBase(
    dataset_name="ag_news_with_suggestions",
    dataset_workspace="argilla",
    vector_field="mini-lm-sentence-transformers",
    api_url=os.environ["ARGILLA_API_URL_DEV"],
    api_key=os.environ["ARGILLA_API_KEY_DEV"],
)

vector_search = VectorSearch(knowledge_base=knowledge_base, n_retrieved_documents=5)

vector_search.load()
result = next(
    vector_search.process([{"text": "Hello, how are you?", "embedding": [1] * 384}])
)
print(result)
# [{'text': ["Italy's Pennetta Wins Idea Prokom Open (AP) AP - Italy's Flavia Pennetta won the Idea Prokom Open for her first WTA Tour title, beating Klara Koukalova of the Czech Republic 7-5, 3-6, 6-3 Saturday after French Open champion Anastasia Myskina withdrew before the semifinals because of a rib injury."], 'embedding': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'id': ['65a57d53-1d1d-4acb-9f12-456d6989e905'], 'status': ['completed'], '_server_id': ['b0a29605-21ed-48d1-b2fe-163243947c2d'], 'split': ['unlabelled'], 'class.responses': [['Sci/Tech']], 'class.responses.users': [['3b1a58ff-6213-4365-880b-17532d13978c']], 'class.responses.status': [['submitted']], 'class.suggestion': ['Sports'], 'class.suggestion.score': [0.3421393299797776], 'class.suggestion.agent': ['setfit']}]

@davidberenstein1957 davidberenstein1957 changed the title Add basic implementation of VectorSearch Add basic implementation of VectorSearch Step KnowledgeBases Sep 29, 2024
Copy link

Documentation for this PR has been built. You can view it at: https://distilabel.argilla.io/pr-1006/

@davidberenstein1957 davidberenstein1957 changed the title Add basic implementation of VectorSearch Step KnowledgeBases Add basic implementation of VectorSearch Step and KnowledgeBases Sep 29, 2024
@davidberenstein1957 davidberenstein1957 marked this pull request as ready for review October 5, 2024 12:22
@davidberenstein1957 davidberenstein1957 added this to the 1.5.0 milestone Oct 14, 2024
@davidberenstein1957 davidberenstein1957 requested review from plaguss and gabrielmbmb and removed request for gabrielmbmb and plaguss November 22, 2024 08:19
@davidberenstein1957 davidberenstein1957 modified the milestones: 1.5.0, 1.6.0 Jan 10, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant