Skip to content

archon159/SELOR

Repository files navigation

SELOR

This repository is the official implementation of Self-Explaining deep models with LOgic rule Reasoning.

Environment Setup

Hardware

Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz with 376GB RAM

NVIDIA A100 GPU with 40GB memory

Operating System

CentOS Linux release 7.9.2009

Python Version

3.7

CUDA Version

11.0

PyTorch Version

1.9.0

Datasets

Yelp Review Polarity (Kaggle)

https://www.kaggle.com/datasets/irustandi/yelp-review-polarity

Clickbait News Detection (Kaggle)

https://www.kaggle.com/c/clickbait-news-detection

Adult (UCI Machine Learning Repository)

https://archive.ics.uci.edu/ml/datasets/adult

Quick Start

Run following code to train the base model and the SELOR model.

python3 run_all.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU>

Training

Train the base model with the following command.

python3 base.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU>

Extract the embedding of base model for train instances with the following command.

python3 extract_base_embedding.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU>

Build the atom pool with the following command.

python3 build_atom_pool.py --dataset <DATASET> --base <BASE_MODEL>

Sample atoms to pretrain the consequent estimator with the following command.

python3 sample_antecedents.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU>

Pretrain a consequent estimator with the following command.

python3 pretrain_consequent_estimator.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU>

Train the SELOR model with the following command.

python3 selor.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU>

Evaluation

Evaluation results are automatically provided after training. If you want to produce only evaluation result of a trained model, please use the following command.

python3 selor.py --dataset <DATASET> --base <BASE_MODEL> --gpu <GPU> --only_eval

Result

This will be updated soon.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft’s Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages