-
Notifications
You must be signed in to change notification settings - Fork 40
DBSCAN
Defined in header <ArborX_DBSCAN.hpp>
template <typename ExecutionSpace, typename Primitives>
Kokkos::View<int *, typename ArborX::AccessTraits<Primitives, ArborX::PrimitivesTag>::memory_space>
dbscan(ExecutionSpace const &space, Primitives const &primitives, float eps, int core_min_size);
The free function ArborX::dbscan
performs DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering from a set of points.
space
: the execution space.
primitives
: geometrical objects one wishes to index. The return value of ArborX::AccessTraits<Primitives, ArborX::PrimitivesTag>::get()
must decay to ArborX::Point
.
eps
: The eps
parameter in the DBSCAN algorithm, corresponding to the maximum distance between two objects to be considered in the neighborhood of each other.
core_min_size
: The minPts
parameter in the DBSCAN algorithm, corresponding to the number of objects in the neighborhood for a point to be considered a core point.
Cluster labels for each point in the dataset. Noise points are given the label -1.
#include <ArborX_DBSCAN.hpp>
#include <iostream>
int main(int argc, char *argv[])
{
Kokkos::ScopeGuard guard(argc, argv);
Kokkos::View<ArborX::Point *> cloud("point_cloud", 9);
auto cloud_host = Kokkos::create_mirror_view(cloud);
// 0 1 2 3 4
// ----------
// 3 | 0 7
// 2 | 5 6
// 1 | 4 3
// 0 | 1 2 8
cloud_host[0] = {3.f, 2.f, 0.f};
cloud_host[1] = {0.f, 0.f, 0.f};
cloud_host[2] = {0.f, 1.f, 0.f};
cloud_host[3] = {1.f, 1.f, 0.f};
cloud_host[4] = {1.f, 0.f, 0.f};
cloud_host[5] = {2.f, 2.f, 0.f};
cloud_host[6] = {2.f, 3.f, 0.f};
cloud_host[7] = {3.f, 3.f, 0.f};
cloud_host[8] = {4.f, 0.f, 0.f};
Kokkos::deep_copy(cloud, cloud_host);
using execution_space = decltype(cloud)::execution_space; // where to execute code
auto labels = ArborX::dbscan(execution_space{}, cloud, 1.2, 2);
auto labels_host = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace{}, labels);
for (int i = 0; i < (int)labels_host.size(); ++i)
std::cout << labels_host(i) << " ";
std::cout << std::endl;
return 0;
}
Output
0 1 1 1 1 0 0 0 -1
The resulting labels are not guaranteed to be identical between the runs. If a border point is connected to core points belonging to different clusters, it may be assigned to either of them.
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996