Skip to content

Commit

Permalink
Fix inpainting script (open-mmlab#258)
Browse files Browse the repository at this point in the history
* expand latents before the check, style

* update readme
  • Loading branch information
patil-suraj authored Aug 26, 2022
1 parent 11133dc commit 5cbed8e
Show file tree
Hide file tree
Showing 2 changed files with 58 additions and 14 deletions.
29 changes: 15 additions & 14 deletions examples/inference/inpainting.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer


def preprocess(image):
def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
Expand All @@ -20,15 +20,16 @@ def preprocess(image):
image = torch.from_numpy(image)
return 2.0 * image - 1.0


def preprocess_mask(mask):
mask=mask.convert("L")
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = mask.resize((w//8, h//8), resample=PIL.Image.NEAREST)
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask,(4,1,1))
mask = mask[None].transpose(0, 1, 2, 3)#what does this step do?
mask = 1 - mask #repaint white, keep black
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
mask = 1 - mask # repaint white, keep black
mask = torch.from_numpy(mask)
return mask

Expand Down Expand Up @@ -90,25 +91,25 @@ def __call__(

self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)

#preprocess image
init_image = preprocess(init_image).to(self.device)
# preprocess image
init_image = preprocess_image(init_image).to(self.device)

# encode the init image into latents and scale the latents
init_latents = self.vae.encode(init_image).sample()
init_latents = 0.18215 * init_latents

# prepare init_latents noise to latents
init_latents = torch.cat([init_latents] * batch_size)
init_latents_orig = init_latents

# preprocess mask
mask = preprocess_mask(mask_image).to(self.device)
mask = torch.cat([mask] * batch_size)

#check sizes
# check sizes
if not mask.shape == init_latents.shape:
raise ValueError(f"The mask and init_image should be the same size!")

# prepare init_latents noise to latents
init_latents = torch.cat([init_latents] * batch_size)

# get the original timestep using init_timestep
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
Expand Down Expand Up @@ -172,9 +173,9 @@ def __call__(
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]

#masking
# masking
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
latents = ( init_latents_proper * mask ) + ( latents * (1-mask) )
latents = (init_latents_proper * mask) + (latents * (1 - mask))

# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
Expand Down
43 changes: 43 additions & 0 deletions examples/inference/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,3 +52,46 @@ You can also run this example on colab [![Open In Colab](https://colab.research.
## Tweak prompts reusing seeds and latents

You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb).


## In-painting using Stable Diffusion

The `inpainting.py` script implements `StableDiffusionInpaintingPipeline`. This script lets you edit specific parts of an image by providing a mask and text prompt.

### How to use it

```python
from io import BytesIO

from torch import autocast
import requests
import PIL

from inpainting import StableDiffusionInpaintingPipeline

def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

device = "cuda"
pipe = StableDiffusionInpaintingPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=True
).to(device)

prompt = "a cat sitting on a bench"
with autocast("cuda"):
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75)["sample"]

images[0].save("cat_on_bench.png")
```

You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/in_painting_with_stable_diffusion_using_diffusers.ipynb)

0 comments on commit 5cbed8e

Please sign in to comment.