-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[CUDA]batch_matmul tensorcore schedule #7146
Merged
Merged
Changes from 7 commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
9844939
add batch_matmul_tensorcore
Meteorix 1ea5ea8
add bmm cublas autotune
Meteorix debec15
add bmm tests
Meteorix a1808b4
out_shape for bmm_tensorcore
Meteorix a2eee2a
fix comments
Meteorix bf8936a
code format
Meteorix 8ce932c
add todos for tensorcore datatype checking
Meteorix 595b9f1
fix lint
Meteorix 3da8299
fix lint
Meteorix cdca880
fix have_tensorcore
Meteorix 72a5885
add dtype check for batch_matmul_tensorcore
Meteorix 618b4bf
fix
Meteorix File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name,too-many-locals,unused-variable,unused-argument | ||
"""cuda batch_matmul operators""" | ||
import tvm | ||
from tvm import autotvm | ||
from tvm import te | ||
from ..utils import traverse_inline, get_const_tuple | ||
from .tensor_intrin import ( | ||
intrin_wmma_load_matrix_A, | ||
intrin_wmma_load_matrix_W, | ||
intrin_wmma_store_matrix, | ||
intrin_wmma_gemm, | ||
) | ||
|
||
|
||
@autotvm.register_topi_compute("batch_matmul_tensorcore.cuda") | ||
def batch_matmul_tensorcore(cfg, x, y, out_shape=None): | ||
"""batch matmul tensorcore operator on cuda""" | ||
# todo: deal with out_shape for broadcast, liuxin.ai | ||
return batch_matmul_tensorcore_cuda(x, y) | ||
|
||
|
||
@autotvm.register_topi_schedule("batch_matmul_tensorcore.cuda") | ||
def schedule_batch_matmul_tensorcore(cfg, outs): | ||
"""Schedule for batch_matmul operator using Tensorcore | ||
|
||
Parameters | ||
---------- | ||
outs: Array of Tensor | ||
The computation graph description of batch_matmul | ||
in the format of an array of tensors. | ||
|
||
Returns | ||
------- | ||
s: Schedule | ||
The computation schedule for the op. | ||
""" | ||
outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs | ||
s = te.create_schedule([x.op for x in outs]) | ||
|
||
def _schedule(cfg, s, C): | ||
A, B = s[C].op.input_tensors | ||
batch, m_dim, k_dim = get_const_tuple(A.shape) | ||
batch, n_dim, k_dim = get_const_tuple(B.shape) | ||
out_dtype = C.dtype | ||
# inline astype fp16 | ||
s[A].compute_inline() | ||
s[B].compute_inline() | ||
|
||
# Explicit memory access | ||
AS = s.cache_read(A, "shared", [C]) | ||
BS = s.cache_read(B, "shared", [C]) | ||
AF = s.cache_read(AS, "wmma.matrix_a", [C]) | ||
BF = s.cache_read(BS, "wmma.matrix_b", [C]) | ||
CF = s.cache_write(C, "wmma.accumulator") | ||
CS = s.cache_read(CF, "shared", [C]) | ||
|
||
# fallback support | ||
target = tvm.target.Target.current() | ||
if cfg.is_fallback: | ||
ref_log = autotvm.tophub.load_reference_log( | ||
target.kind.name, target.model, "batch_matmul_tensorcore.cuda" | ||
) | ||
cfg.fallback_with_reference_log(ref_log) | ||
|
||
# Deal with op fusion, such as bias/relu and slice after padding | ||
if C.op not in s.outputs and "injective" in s.outputs[0].tag: | ||
s[C].compute_inline() | ||
C = s.outputs[0].output(0) | ||
|
||
# create tuning space | ||
cfg.define_knob("block_row_warps", [1, 2, 4]) | ||
cfg.define_knob("block_col_warps", [1, 2, 4]) | ||
cfg.define_knob("warp_row_tiles", [1, 2, 4]) | ||
cfg.define_knob("warp_col_tiles", [1, 2, 4]) | ||
cfg.define_knob("chunk", [1, 2, 4, 8]) | ||
cfg.define_knob("offset", [0, 8]) | ||
cfg.define_knob("offsetCS", [0, 8]) | ||
cfg.define_knob("vec", [1, 2, 4, 8]) | ||
|
||
# Ensure that the default parameters are applicable when autotvm is not in use | ||
if m_dim % 32 == 0 and n_dim % 8 == 0: | ||
cfg.define_knob("wmma_m", [32, 16, 8]) | ||
elif m_dim % 16 == 0 and n_dim % 16 == 0: | ||
cfg.define_knob("wmma_m", [16, 8, 32]) | ||
elif m_dim % 8 == 0 and n_dim % 32 == 0: | ||
cfg.define_knob("wmma_m", [8, 16, 32]) | ||
|
||
warp_size = 32 | ||
wmma_k = 16 | ||
block_row_warps = cfg["block_row_warps"].val | ||
block_col_warps = cfg["block_col_warps"].val | ||
warp_row_tiles = cfg["warp_row_tiles"].val | ||
warp_col_tiles = cfg["warp_col_tiles"].val | ||
chunk = cfg["chunk"].val | ||
offset = cfg["offset"].val | ||
offsetCS = cfg["offsetCS"].val | ||
wmma_m = cfg["wmma_m"].val | ||
vec = cfg["vec"].val | ||
|
||
if wmma_m == 16: | ||
wmma_n = 16 | ||
elif wmma_m == 8: | ||
wmma_n = 32 | ||
elif wmma_m == 32: | ||
wmma_n = 8 | ||
|
||
# Define the stride of intrin functions | ||
AS_align = chunk * wmma_k + offset | ||
BS_align = chunk * wmma_k + offset | ||
CS_align = warp_col_tiles * block_col_warps * wmma_n + offsetCS | ||
AS_stride = [AS_align, 1] | ||
BS_stride = [BS_align, 1] | ||
AF_stride = [wmma_k, 1] | ||
BF_stride = [wmma_k, 1] | ||
CF_stride = [warp_col_tiles * wmma_n, 1] | ||
CS_stride = [CS_align, 1] | ||
|
||
block_x = te.thread_axis("blockIdx.x") | ||
block_y = te.thread_axis("blockIdx.y") | ||
block_z = te.thread_axis("blockIdx.z") | ||
thread_x = te.thread_axis("threadIdx.x") | ||
thread_y = te.thread_axis("threadIdx.y") | ||
thread_z = te.thread_axis("threadIdx.z") | ||
|
||
# Schedule for dense computation | ||
block_factor_m = wmma_m * warp_row_tiles * block_row_warps | ||
block_factor_n = wmma_n * warp_col_tiles * block_col_warps | ||
b, m, n = C.op.axis | ||
block_i, bc = s[C].split(m, factor=block_factor_m) | ||
block_j, oc = s[C].split(n, factor=block_factor_n) | ||
s[C].reorder(b, block_i, block_j, bc, oc) | ||
t = s[C].fuse(bc, oc) | ||
t, vi = s[C].split(t, factor=vec) | ||
t, tx = s[C].split(t, factor=warp_size) | ||
t, ty = s[C].split(t, factor=block_row_warps) | ||
t, tz = s[C].split(t, factor=block_col_warps) | ||
s[C].bind(block_i, block_x) | ||
s[C].bind(block_j, block_y) | ||
s[C].bind(b, block_z) | ||
s[C].bind(tz, thread_z) | ||
s[C].bind(ty, thread_y) | ||
s[C].bind(tx, thread_x) | ||
s[C].vectorize(vi) | ||
|
||
# Schedule for wmma store | ||
s[CS].compute_at(s[C], block_j) | ||
bs, bb, oo = CS.op.axis | ||
s[CS].storage_align(bb, CS_align - 1, CS_align) | ||
bb, bbi = s[CS].split(bb, factor=wmma_m) | ||
oo, ooi = s[CS].split(oo, factor=wmma_n) | ||
bb, bbii = s[CS].split(bb, factor=warp_row_tiles) | ||
oo, ooii = s[CS].split(oo, factor=warp_col_tiles) | ||
s[CS].reorder(bs, bb, oo, bbii, ooii, bbi, ooi) | ||
|
||
# Schedule for wmma computation | ||
s[CF].compute_at(s[CS], oo) | ||
bs, warp_i, warp_j = CF.op.axis | ||
warp_i, _ii = s[CF].split(warp_i, factor=wmma_m) | ||
warp_j, _jj = s[CF].split(warp_j, factor=wmma_n) | ||
(k,) = CF.op.reduce_axis | ||
k, _k = s[CF].split(k, factor=wmma_k) | ||
ko, ki = s[CF].split(k, factor=chunk) | ||
s[CF].reorder(bs, ko, ki, warp_i, warp_j, _ii, _jj, _k) | ||
|
||
# Schedule for wmma_matrix_a load | ||
s[AF].compute_at(s[CF], ki) | ||
bs, b, i = AF.op.axis | ||
b, b_ii = s[AF].split(b, factor=wmma_m) | ||
i, i_jj = s[AF].split(i, factor=wmma_k) | ||
s[AF].reorder(bs, b, i, b_ii, i_jj) | ||
|
||
# Schedule for wmma_matrix_b load | ||
s[BF].compute_at(s[CF], ki) | ||
bs, o, i = BF.op.axis | ||
o, o_ii = s[BF].split(o, factor=wmma_n) | ||
i, i_ii = s[BF].split(i, factor=wmma_k) | ||
s[BF].reorder(bs, o, i, o_ii, i_ii) | ||
|
||
# Schedule for A's(B's) shared memory load | ||
def shared_shedule(stage, strides): | ||
s[stage].compute_at(s[CF], ko) | ||
bs, xo, yo = stage.op.axis | ||
s[stage].storage_align(xo, strides - 1, strides) | ||
t = s[stage].fuse(xo, yo) | ||
t, vi = s[stage].split(t, factor=vec) | ||
t, tx = s[stage].split(t, factor=warp_size) | ||
t, ty = s[stage].split(t, factor=block_row_warps) | ||
_, tz = s[stage].split(t, factor=block_col_warps) | ||
s[stage].bind(ty, thread_y) | ||
s[stage].bind(tz, thread_z) | ||
s[stage].bind(tx, thread_x) | ||
s[stage].vectorize(vi) | ||
|
||
shared_shedule(AS, AS_align) | ||
shared_shedule(BS, BS_align) | ||
|
||
shape = (wmma_m, wmma_n, wmma_k) | ||
# TODO: add checking here, datatype casting may cause precision loss | ||
in_dtype = "float16" | ||
AL_gemm = te.placeholder((wmma_m, wmma_k), name="AL_gemm", dtype=in_dtype) | ||
BL_gemm = te.placeholder((wmma_n, wmma_k), name="BL_gemm", dtype=in_dtype) | ||
k_gemm = te.reduce_axis((0, wmma_k), name="k_gemm") | ||
CL_compute = te.compute( | ||
(wmma_m, wmma_n), | ||
lambda ii, jj: te.sum( | ||
AL_gemm[ii, k_gemm].astype(out_dtype) * BL_gemm[jj, k_gemm].astype(out_dtype), | ||
axis=k_gemm, | ||
), | ||
name="CL_compute", | ||
) | ||
|
||
# lower the computation loops down to TensorCore hardware intrinsics | ||
# by mapping the dense tensorcore to tensor intrinsics | ||
s[AF].tensorize( | ||
b_ii, | ||
intrin_wmma_load_matrix_A( | ||
AF_stride, | ||
AS_stride, | ||
shape, | ||
"row_major", | ||
(wmma_m, wmma_k), | ||
(wmma_m, wmma_k), | ||
"float16", | ||
), | ||
) | ||
s[BF].tensorize( | ||
o_ii, | ||
intrin_wmma_load_matrix_W( | ||
BF_stride, | ||
BS_stride, | ||
shape, | ||
"col_major", | ||
(wmma_n, wmma_k), | ||
(wmma_n, wmma_k), | ||
"float16", | ||
), | ||
) | ||
s[CF].tensorize( | ||
_ii, | ||
intrin_wmma_gemm(AL_gemm, BL_gemm, CL_compute, AF_stride, BF_stride, CF_stride, shape), | ||
) | ||
s[CS].tensorize( | ||
bbi, | ||
intrin_wmma_store_matrix( | ||
CS_stride, CF_stride, shape, out_dtype, (wmma_m, wmma_n), (wmma_m, wmma_n) | ||
), | ||
) | ||
|
||
def _callback(op): | ||
if "batch_matmul_tensorcore" in op.tag: | ||
_schedule(cfg, s, op.output(0)) | ||
|
||
traverse_inline(s, outs[0].op, _callback) | ||
return s | ||
|
||
|
||
def batch_matmul_tensorcore_cuda(x, y): | ||
"""Computes batch matrix multiplication of `x` and `y` when `x` and `y` are | ||
data in batch. | ||
|
||
Parameters | ||
---------- | ||
x : tvm.te.Tensor | ||
3-D with shape [batch, M, K] | ||
|
||
y : tvm.te.Tensor | ||
3-D with shape [batch, N, K] | ||
|
||
Returns | ||
------- | ||
output : tvm.te.Tensor | ||
3-D with shape [batch, M, N] | ||
""" | ||
assert len(x.shape) == 3 and len(y.shape) == 3, "only support 3-dim batch_matmul" | ||
x_shape = get_const_tuple(x.shape) | ||
y_shape = get_const_tuple(y.shape) | ||
assert x_shape[0] == y_shape[0], "batch dimension doesn't match" | ||
assert x_shape[2] == y_shape[2], "shapes of x and y is inconsistant" | ||
batch, M, K = x.shape | ||
N = y.shape[1] | ||
out_dtype = x.dtype | ||
|
||
assert ( | ||
(M % 8 == 0 and K % 16 == 0 and N % 32 == 0) | ||
or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) | ||
or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) | ||
), "The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) for now" | ||
|
||
x_16 = te.compute((batch, M, K), lambda b, i, k: x[b, i, k].astype("float16")) | ||
y_16 = te.compute((batch, N, K), lambda b, j, k: y[b, j, k].astype("float16")) | ||
|
||
k = te.reduce_axis((0, K), name="k") | ||
return te.compute( | ||
(batch, M, N), | ||
lambda b, i, j: te.sum( | ||
x_16[b, i, k].astype(out_dtype) * y_16[b, j, k].astype(out_dtype), axis=k | ||
), | ||
tag="batch_matmul_tensorcore", | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's better to use
nvcc.have_tensorcore(target=target)
here sincetvm.gpu(0)
might not exist.