Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TUTORIAL]TFLite QNN Tutorial #5595

Merged
merged 2 commits into from
May 21, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
251 changes: 251 additions & 0 deletions tutorials/frontend/deploy_prequantized_tflite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Deploy a Framework-prequantized Model with TVM - Part 3 (TFLite)
================================================================
**Author**: `Siju Samuel <https://github.com/siju-samuel>`_
Welcome to part 3 of the Deploy Framework-Prequantized Model with TVM tutorial.
In this part, we will start with a Quantized TFLite graph and then compile and execute it via TVM.


For more details on quantizing the model using TFLite, readers are encouraged to
go through `Converting Quantized Models
<https://www.tensorflow.org/lite/convert/quantization>`_.

The TFLite models can be downloaded from this `link
<https://www.tensorflow.org/lite/guide/hosted_models>`_.

To get started, Tensorflow and TFLite package needs to be installed as prerequisite.

.. code-block:: bash

# install tensorflow and tflite
pip install tensorflow==2.1.0
pip install tflite==2.1.0

Now please check if TFLite package is installed successfully, ``python -c "import tflite"``

"""

###############################################################################
# Necessary imports
# -----------------
import os

import numpy as np
import tflite

import tvm
from tvm import relay


######################################################################
# Download pretrained Quantized TFLite model
# ------------------------------------------

# Download mobilenet V2 TFLite model provided by Google
from tvm.contrib.download import download_testdata

model_url = "https://storage.googleapis.com/download.tensorflow.org/models/" \
"tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz"

# Download model tar file and extract it to get mobilenet_v2_1.0_224.tflite
model_path = download_testdata(model_url, "mobilenet_v2_1.0_224_quant.tgz",
module=['tf', 'official'])
model_dir = os.path.dirname(model_path)


######################################################################
# Utils for downloading and extracting zip files
# ----------------------------------------------
def extract(path):
import tarfile
if path.endswith("tgz") or path.endswith("gz"):
dir_path = os.path.dirname(path)
tar = tarfile.open(path)
tar.extractall(path=dir_path)
tar.close()
else:
raise RuntimeError('Could not decompress the file: ' + path)

extract(model_path)


######################################################################
# Load a test image
# -----------------

#######################################################################
# Get a real image for e2e testing
# --------------------------------
def get_real_image(im_height, im_width):
from PIL import Image
repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'
img_name = 'elephant-299.jpg'
image_url = os.path.join(repo_base, img_name)
img_path = download_testdata(image_url, img_name, module='data')
image = Image.open(img_path).resize((im_height, im_width))
x = np.array(image).astype('uint8')
data = np.reshape(x, (1, im_height, im_width, 3))
return data

data = get_real_image(224, 224)

######################################################################
# Load a tflite model
# -------------------

######################################################################
# Now we can open mobilenet_v2_1.0_224.tflite
tflite_model_file = os.path.join(model_dir, "mobilenet_v2_1.0_224_quant.tflite")
tflite_model_buf = open(tflite_model_file, "rb").read()

tflite_model = tflite.Model.GetRootAsModel(tflite_model_buf, 0)


###############################################################################
# Lets run TFLite pre-quantized model inference and get the TFLite prediction.
def run_tflite_model(tflite_model_buf, input_data):
""" Generic function to execute TFLite """
try:
from tensorflow import lite as interpreter_wrapper
except ImportError:
from tensorflow.contrib import lite as interpreter_wrapper

input_data = input_data if isinstance(input_data, list) else [input_data]

interpreter = interpreter_wrapper.Interpreter(model_content=tflite_model_buf)
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# set input
assert len(input_data) == len(input_details)
for i in range(len(input_details)):
interpreter.set_tensor(input_details[i]['index'], input_data[i])

# Run
interpreter.invoke()

# get output
tflite_output = list()
for i in range(len(output_details)):
tflite_output.append(interpreter.get_tensor(output_details[i]['index']))

return tflite_output

###############################################################################
# Lets run TVM compiled pre-quantized model inference and get the TVM prediction.
def run_tvm(graph, lib, params):
from tvm.contrib import graph_runtime
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
rt_mod.set_input(**params)
rt_mod.set_input('input', data)
rt_mod.run()
tvm_res = rt_mod.get_output(0).asnumpy()
tvm_pred = np.squeeze(tvm_res).argsort()[-5:][::-1]
return tvm_pred, rt_mod


###############################################################################
# TFLite inference
# ----------------

###############################################################################
# Run TFLite inference on the quantized model.
tflite_res = run_tflite_model(tflite_model_buf, data)
tflite_pred = np.squeeze(tflite_res).argsort()[-5:][::-1]

###############################################################################
# TVM compilation and inference
# -----------------------------

###############################################################################
# We use the TFLite-Relay parser to convert the TFLite pre-quantized graph into Relay IR. Note that
# frontend parser call for a pre-quantized model is exactly same as frontend parser call for a FP32
# model. We encourage you to remove the comment from print(mod) and inspect the Relay module. You
# will see many QNN operators, like, Requantize, Quantize and QNN Conv2D.
dtype_dict = {'input': data.dtype.name}
shape_dict = {'input': data.shape}

mod, params = relay.frontend.from_tflite(tflite_model,
shape_dict=shape_dict,
dtype_dict=dtype_dict)
# print(mod)

###############################################################################
# Lets now the compile the Relay module. We use the "llvm" target here. Please replace it with the
# target platform that you are interested in.
target = 'llvm'
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(mod, target=target,
params=params)

###############################################################################
# Finally, lets call inference on the TVM compiled module.
tvm_pred, rt_mod = run_tvm(graph, lib, params)

###############################################################################
# Accuracy comparison
# -------------------

###############################################################################
# Print the top-5 labels for MXNet and TVM inference.
# Checking the labels because the requantize implementation is different between
# TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.

print("TVM Top-5 labels:", tvm_pred)
print("TFLite Top-5 labels:", tflite_pred)


##########################################################################
# Measure performance
# -------------------
# Here we give an example of how to measure performance of TVM compiled models.
n_repeat = 100 # should be bigger to make the measurement more accurate
ctx = tvm.cpu(0)
ftimer = rt_mod.module.time_evaluator("run", ctx, number=1, repeat=n_repeat)
prof_res = np.array(ftimer().results) * 1e3
print("Elapsed average ms:", np.mean(prof_res))

######################################################################
# .. note::
#
# Unless the hardware has special support for fast 8 bit instructions, quantized models are
# not expected to be any faster than FP32 models. Without fast 8 bit instructions, TVM does
# quantized convolution in 16 bit, even if the model itself is 8 bit.
#
# For x86, the best performance can be achieved on CPUs with AVX512 instructions set.
# In this case, TVM utilizes the fastest available 8 bit instructions for the given target.
# This includes support for the VNNI 8 bit dot product instruction (CascadeLake or newer).
# For EC2 C5.12x large instance, TVM latency for this tutorial is ~2 ms.
#
# Intel conv2d NCHWc schedule on ARM gives better end-to-end latency compared to ARM NCHW
# conv2d spatial pack schedule for many TFLite networks. ARM winograd performance is higher but
# it has a high memory footprint.
#
# Moreover, the following general tips for CPU performance equally applies:
#
# * Set the environment variable TVM_NUM_THREADS to the number of physical cores
# * Choose the best target for your hardware, such as "llvm -mcpu=skylake-avx512" or
# "llvm -mcpu=cascadelake" (more CPUs with AVX512 would come in the future)
# * Perform autotuning - `Auto-tuning a convolution network for x86 CPU
siju-samuel marked this conversation as resolved.
Show resolved Hide resolved
# <https://tvm.apache.org/docs/tutorials/autotvm/tune_relay_x86.html>`_.
# * To get best inference performance on ARM CPU, change target argument according to your
# device and follow `Auto-tuning a convolution network for ARM CPU
# <https://tvm.apache.org/docs/tutorials/autotvm/tune_relay_arm.html>`_.