Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

enable rocm target for topi/recipes. add timing util to gemm test. #554

Merged
merged 1 commit into from
Oct 14, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 16 additions & 14 deletions topi/recipe/conv/depthwise_conv2d_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def check_device(device):
if not tvm.module.enabled(device):
print("Skip because %s is not enabled" % device)
return
ctx = tvm.gpu(0) if device == "cuda" else tvm.cl(0)
ctx = tvm.context(device, 0)
# Build the kernel
f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device)
Expand Down Expand Up @@ -111,12 +111,13 @@ def check_device(device):
np.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)
print("success")

with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=False,
detect_global_barrier=False,
restricted_func=True):
check_device("cuda")
for device in ['cuda', 'opencl', 'rocm']:
with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=device == 'rocm',
detect_global_barrier=False,
restricted_func=True):
check_device(device)

def test_depthwise_conv2d_nhwc():
"""You may test different settings."""
Expand Down Expand Up @@ -159,7 +160,7 @@ def check_device(device):
if not tvm.module.enabled(device):
print("Skip because %s is not enabled" % device)
return
ctx = tvm.gpu(0) if device == "cuda" else tvm.cl(0)
ctx = tvm.context(device, 0)
# Build the kernel
f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device)
Expand Down Expand Up @@ -200,12 +201,13 @@ def check_device(device):
np.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)
print("success")

with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=False,
detect_global_barrier=False,
restricted_func=True):
check_device("cuda")
for device in ['cuda', 'opencl', 'rocm']:
with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=device == 'rocm',
detect_global_barrier=False,
restricted_func=True):
check_device(device)

if __name__ == "__main__":
test_depthwise_conv2d_nchw()
Expand Down
8 changes: 4 additions & 4 deletions topi/recipe/conv/test_conv2d_hwcn_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import tvm
from tvm.contrib import nvcc
import topi
from topi.nn.util import get_const_tuple
from topi.util import get_const_tuple

TASK = "conv2d_hwcn_map"
USE_MANUAL_CODE = False
Expand Down Expand Up @@ -55,22 +55,22 @@ def check_device(device):
if not tvm.module.enabled(device):
print("Skip because %s is not enabled" % device)
return
ctx = tvm.gpu(0) if device == "cuda" else tvm.cl(0)
ctx = tvm.context(device, 0)
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=False):
unroll_explicit=device == 'rocm'):
func1 = tvm.build(s1, [A, W, B], device)
func1(a, w, b)
np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)
func2 = tvm.build(s2, [A, W, C], device)
func2(a, w, c)
np.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)

for device in ['cuda', 'opencl']:
for device in ['cuda', 'opencl', 'rocm']:
check_device(device)


Expand Down
19 changes: 14 additions & 5 deletions topi/recipe/gemm/cuda_gemm_square.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,11 +100,12 @@ def test_gemm():
s[BB].double_buffer()
# correctness
def check_device(device):
print("Device %s" % device)
if not tvm.module.enabled(device):
print("Skip because %s is not enabled" % device)
return
f = tvm.build(s, [A, B, C], device)
ctx = tvm.gpu(0) if device == "cuda" else tvm.cl(0)
ctx = tvm.context(device, 0)
# launch the kernel.
n, m, l = nn, nn, nn
a_np = np.random.uniform(size=(n, l)).astype(A.dtype)
Expand All @@ -117,10 +118,18 @@ def check_device(device):
np.testing.assert_allclose(
c.asnumpy(), np.dot(b_np.T, a_np), rtol=1e-5)

with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=False):
check_device("cuda")
num_flops = 2 * nn * nn * nn
num_runs = 10
timer_f = f.time_evaluator(f.entry_name, ctx, number=num_runs)
t = timer_f(a, b, c).mean
GFLOPS = num_flops / (t * 1e3) / 1e6
print("average time cost of %d runs = %g ms, %g GFLOPS." % (num_runs, t * 1e3, GFLOPS))

for device in ['cuda', 'opencl', 'rocm']:
with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0,
unroll_explicit=device == 'rocm'):
check_device(device)

if __name__ == "__main__":
test_gemm()