Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support non-floating point operations in compute_flops for AutoTVM #2776

Merged
merged 1 commit into from
Mar 11, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion python/tvm/autotvm/task/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ def _count_flop(exp):
expr.Max, expr.Min,
expr.EQ, expr.NE, expr.LT, expr.LE, expr.GT, expr.GE,
expr.And, expr.Or, expr.Not)):
base = 1 if "float" in exp.a.dtype else 0
base = 1

if isinstance(exp, expr.Not): # unary
return base + _count_flop(exp.a)
Expand All @@ -348,6 +348,10 @@ def _count_flop(exp):
return _count_flop(exp.condition) + max(_count_flop(exp.true_value),
_count_flop(exp.false_value))
if isinstance(exp, expr.Call):
if exp.call_type == expr.Call.Halide:
# Ignore flops from indexing expressions.
return 0

return sum([_count_flop(x) for x in exp.args])

raise FlopCalculationError("Found unsupported operator in the compute expr")
Expand Down
73 changes: 64 additions & 9 deletions tests/python/unittest/test_autotvm_flop_calculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,17 @@

from tvm.autotvm.task.task import compute_flop

def random_dtypes():
"""Return pair of (input, accumulator) dtypes"""
candidates = [("float32", "float32"), ("float16", "float32"), ("int8", "int32")]
return candidates[np.random.choice(len(candidates))]

def test_conv():
for i in range(5):
N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)]
D = tvm.placeholder((N, CI, H, W))
K = tvm.placeholder((CO, CI, KH, KW))
(input_dtype, acc_dtype) = random_dtypes()
D = tvm.placeholder((N, CI, H, W), dtype=input_dtype)
K = tvm.placeholder((CO, CI, KH, KW), dtype=input_dtype)

KH = min(H, KH)
KW = min(W, KW)
Expand All @@ -22,7 +28,8 @@ def test_conv():
OW = (W - KW) + 1

C = tvm.compute((N, CO, OH, OW), lambda n, co, h, w:
tvm.sum(D[n][ci][h][w] * K[co][ci][h][w], axis=[ci, kh, kw]))
tvm.sum(D[n][ci][h][w].astype(acc_dtype) * K[co][ci][h][w].astype(acc_dtype),
axis=[ci, kh, kw]))

s = tvm.create_schedule([C.op])

Expand All @@ -31,15 +38,16 @@ def test_conv():
def test_pack_gemm():
for i in range(5):
N, L, M = [np.random.randint(10, 128) * 4 for _ in range(3)]
A = tvm.placeholder((N, L))
B = tvm.placeholder((M, L))
(input_dtype, acc_dtype) = random_dtypes()
A = tvm.placeholder((N, L), dtype=input_dtype)
B = tvm.placeholder((M, L), dtype=input_dtype)
k = tvm.reduce_axis((0, L))

bn = 4
A_pack = tvm.compute((N // bn, L, bn), lambda i, j, k: A[i * bn + k][j])
B_pack = tvm.compute((M // bn, L, bn), lambda i, j, k: B[i * bn + k][j])
C_pack = tvm.compute((N // bn, M // bn, bn, bn), lambda i, j, ii, jj:
tvm.sum(A_pack[i, k, ii] * B_pack[j, k, jj], axis=[k]))
tvm.sum(A_pack[i, k, ii].astype(acc_dtype) * B_pack[j, k, jj].astype(acc_dtype), axis=[k]))
C = tvm.compute((N, M), lambda i, j: C_pack[i // bn][j // bn][i % bn][j % bn])

s = tvm.create_schedule([C.op])
Expand All @@ -48,14 +56,61 @@ def test_pack_gemm():
def test_outer_dot():
for i in range(5):
N, M = [np.random.randint(10, 128) * 4 for _ in range(2)]
A = tvm.placeholder((N,))
B = tvm.placeholder((M,))
(input_dtype, acc_dtype) = random_dtypes()
A = tvm.placeholder((N,), dtype=input_dtype)
B = tvm.placeholder((M,), dtype=input_dtype)

C = tvm.compute((N, M), lambda i, j: A[i] * B[j])
C = tvm.compute((N, M), lambda i, j: A[i].astype(acc_dtype) * B[j].astype(acc_dtype))

s = tvm.create_schedule([C.op])
assert compute_flop(s) == N * M

def test_max_pool():
for i in range(5):
N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)]
(input_dtype, _) = random_dtypes()
D = tvm.placeholder((N, CI, H, W), dtype=input_dtype)

KH = min(H, KH)
KW = min(W, KW)

kh = tvm.reduce_axis((0, KH))
kw = tvm.reduce_axis((0, KW))

OH = (H - KH) + 1
OW = (W - KW) + 1

C = tvm.compute(
(N, CO, OH, OW),
lambda n, co, h, w: tvm.max(D[n][co][h + kh][w + kw], axis=[kh, kw]))

s = tvm.create_schedule([C.op])

assert compute_flop(s) == N * CO * OH * OW * KH * KW

def test_average_pool():
for i in range(5):
N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)]
(input_dtype, acc_dtype) = random_dtypes()
D = tvm.placeholder((N, CI, H, W), dtype=input_dtype)

KH = min(H, KH)
KW = min(W, KW)

kh = tvm.reduce_axis((0, KH))
kw = tvm.reduce_axis((0, KW))

OH = (H - KH) + 1
OW = (W - KW) + 1

C = tvm.compute(
(N, CO, OH, OW),
lambda n, co, h, w: tvm.sum(D[n][co][h + kh][w + kw].astype(acc_dtype) / (KW * KH), axis=[kh, kw]))

s = tvm.create_schedule([C.op])

assert compute_flop(s) == 2 * N * CO * OH * OW * KH * KW

def test_move():
"""No float number operation in simple move. So the estimator should raise an error """
N = 1024
Expand Down