Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Collage] PartitionRule (though without CombinePartitionRule) #11993

Merged
merged 3 commits into from
Jul 12, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
258 changes: 258 additions & 0 deletions src/relay/collage/candidate_partition.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file src/relay/collage/candidate_partition.cc
* \brief A potential partition in the Collage search.
*/

#include "./candidate_partition.h"

#include <tvm/relay/attrs/memory.h>

#include "./candidate_set.h"
#include "./partition_rule.h"
#include "./partition_spec.h"
#include "./utils.h"

namespace tvm {
namespace relay {
namespace collage {

TVM_REGISTER_NODE_TYPE(CandidatePartitionNode);

void CandidatePartitionNode::VisitAttrs(AttrVisitor* v) {
v->Visit("rule_name", &rule_name_);
v->Visit("sub_graph", &sub_graph_);
v->Visit("spec", &spec_);
// TODO(mbs): cost_
}

PartitionSpec CandidatePartitionNode::partition_spec() const {
return Downcast<PartitionSpec>(spec_);
}

std::string CandidatePartitionNode::partition_spec_name() const {
return Downcast<PartitionSpec>(spec_)->spec_name_;
}

Target CandidatePartitionNode::target() const { return Downcast<PartitionSpec>(spec_)->target_; }

std::string CandidatePartitionNode::ToSummary(const DataflowGraph& dataflow_graph) const {
std::ostringstream os;
os << sub_graph_->label_;
os << " | (";
bool first = true;
for (PostDfsIndex index : sub_graph_->input_) {
Expr sub_expr = dataflow_graph.index_to_node(index)->ref();
if (CanInline(sub_expr)) {
continue;
}
if (first) {
first = false;
} else {
os << ", ";
}
os << PrettyPrint(sub_expr->checked_type());
}
os << ") -> (";
first = true;
for (PostDfsIndex index : sub_graph_->exit_) {
Expr sub_expr = dataflow_graph.index_to_node(index)->ref();
if (CanInline(sub_expr)) {
continue;
}
if (first) {
first = false;
} else {
os << ", ";
}
os << PrettyPrint(sub_expr->checked_type());
}
os << ") | ";
os << sub_graph_->inside_.ToString();
os << " | ";
os << partition_spec_name();
os << " | ";
os << cost_.ToString();
return os.str();
}

std::string CandidatePartitionNode::ToString() const {
std::ostringstream os;
os << "{rule_name=" << rule_name_;
os << ",sub_graph=" << sub_graph_->ToString();
os << ",spec_name=" << partition_spec_name();
if (!cost_.is_unknown()) {
os << ",cost=" << cost_.ToString();
}
os << "}";
return os.str();
}

CandidatePartition::CandidatePartition(String rule_name, SubGraph sub_graph,
ObjectRef /* actually PartitionSpec */ spec, Cost cost) {
auto node = runtime::make_object<CandidatePartitionNode>();
node->rule_name_ = std::move(rule_name);
node->sub_graph_ = std::move(sub_graph);
node->spec_ = std::move(spec);
node->cost_ = cost;
data_ = std::move(node);
}

CandidatePartition WithRuleName(CandidatePartition candidate, String rule_name) {
if (rule_name == candidate->rule_name_) {
return candidate;
}
auto* node = candidate.CopyOnWrite();
node->rule_name_ = std::move(rule_name);
return GetRef<CandidatePartition>(node);
}

CandidatePartition WithSubGraph(CandidatePartition candidate, SubGraph sub_graph) {
if (sub_graph == candidate->sub_graph_) {
return candidate;
}
auto* node = candidate.CopyOnWrite();
node->sub_graph_ = std::move(sub_graph);
return GetRef<CandidatePartition>(node);
}

bool CandidatePartition::operator<(const CandidatePartition& that) const {
// Order lexicographically on sub-graphs.
if (*get()->sub_graph_.get() < *that->sub_graph_.get()) {
return true;
}
if (*that->sub_graph_.get() < *get()->sub_graph_.get()) {
return false;
}
// Break ties by rule name.
return get()->rule_name_ < that->rule_name_;
}

bool CandidatePartition::AreTouching(const DataflowGraph& dataflow_graph,
const CandidatePartition& that) const {
return get()->spec_ == that->spec_ &&
get()->sub_graph_.AreTouching(dataflow_graph, that->sub_graph_);
}

CandidatePartition CandidatePartition::DisjointUnion(const DataflowGraph& dataflow_graph,
const CandidatePartition& that) const {
ICHECK_EQ(get()->spec_, that->spec_);
return CandidatePartition(UnionLabels(get()->rule_name_, that->rule_name_),
get()->sub_graph_.DisjointUnion(dataflow_graph, that->sub_graph_),
get()->spec_, get()->cost_ + that->cost_);
}

/*static*/
CandidatePartition CandidatePartition::DisjointUnion(const DataflowGraph& dataflow_graph,
std::vector<CandidatePartition> candidates) {
ICHECK_GT(candidates.size(), 1);
CandidatePartition result = candidates.front();
for (size_t i = 1; i < candidates.size(); ++i) {
result = result.DisjointUnion(dataflow_graph, candidates[i]);
}
return result;
}

/*static*/
Expr CandidatePartition::ParallelRewrite(const DataflowGraph& dataflow_graph,
const std::vector<CandidatePartition>& candidates) {
std::vector<SubGraph> sub_graphs;
sub_graphs.reserve(candidates.size());
for (const auto& candidate : candidates) {
sub_graphs.emplace_back(candidate->sub_graph_);
}
return SubGraph::ParallelRewrite(dataflow_graph, sub_graphs);
}

/*static*/
std::vector<CandidatePartition> CandidatePartition::MaxCoalesce(
const DataflowGraph& dataflow_graph, std::vector<CandidatePartition> candidates) {
VLOG(1) << "Running MaxCoalesce over " << candidates.size() << " candidates";
// This is an eager version of using the simple (kOpaque, kOpaque) combiner.

// Switch to set representation.
CandidateSet result_set(std::move(candidates));

// Until fixed point...
size_t num_rounds = 0;
while (result_set.PrepareForNextRound()) {
VLOG_CONTEXT << "round " << ++num_rounds;
VLOG(1) << "checking " << result_set.size() << " candidates (" << result_set.first_new_index()
<< " existing)";
IndexSet removed_this_round(result_set.size()); // over candidate indexes!

// Build map from post-dfs indices to the indices of candidates with corresponding entry node.
// NOTE: the index set is over candidate indices not post-dfs indices!
std::vector<IndexSet> entry_map(dataflow_graph.size(), IndexSet(result_set.size()));
for (size_t i = 0; i < result_set.size(); ++i) {
CandidatePartition candidate = result_set.at(i);
for (PostDfsIndex entry_index : candidate->sub_graph_->entry_) {
entry_map[entry_index].Add(i);
}
}

for (size_t i = 0; i < result_set.size(); ++i) {
if (removed_this_round[i]) {
// Already merged.
continue;
}
CandidatePartition upstream = result_set.at(i);
// Narrow our search to just those candidates which could touch.
IndexSet possible_downstream(result_set.size()); // over candidate indexes!
for (PostDfsIndex output_index : upstream->sub_graph_->output_) {
possible_downstream = possible_downstream | entry_map[output_index];
}
for (size_t j : possible_downstream) {
if (removed_this_round[j]) {
// Already merged.
continue;
}
if (i == j) {
// Ignore self.
continue;
}
CandidatePartition downstream = result_set.at(j);
if (!upstream.AreTouching(dataflow_graph, downstream)) {
continue;
}
CandidatePartition new_candidate = upstream.DisjointUnion(dataflow_graph, downstream);
VLOG(2) << "Merging upstream candidate " << upstream->ToString()
<< " and downstream candidate " << downstream->ToString() << " to yield "
<< new_candidate->ToString();
result_set.Add(dataflow_graph, new_candidate);
result_set.Remove(upstream);
removed_this_round.Add(i);
result_set.Remove(downstream);
removed_this_round.Add(j);
}
}
}

// Restore canonical order.
result_set.sort();

VLOG(1) << "MaxCoalesce produced " << result_set.size() << " candidates";
return result_set.MovedCurrentCandidates();
}

} // namespace collage
} // namespace relay
} // namespace tvm
Loading