Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Meta Schedule] Refactor meta schedule testing utils #10648

Merged
merged 3 commits into from
Mar 17, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/meta_schedule/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,4 @@
# specific language governing permissions and limitations
# under the License.
"""Testing utilities in meta schedule"""
from .utils import DummyDatabase, DummyBuilder, DummyRunner, DummyRunnerFuture, DummyMutator
106 changes: 106 additions & 0 deletions python/tvm/meta_schedule/testing/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

from typing import List, Optional
from random import random

import tvm
from tvm.meta_schedule import TuneContext
from tvm.meta_schedule.utils import derived_object
from tvm.meta_schedule.mutator.mutator import PyMutator
from tvm.meta_schedule.database import PyDatabase, Workload, TuningRecord
from tvm.meta_schedule.builder import PyBuilder, BuilderInput, BuilderResult
from tvm.meta_schedule.runner import (
RunnerInput,
RunnerResult,
RunnerFuture,
PyRunnerFuture,
PyRunner,
)
from tvm.ir import IRModule
from tvm.tir.schedule import Trace

@derived_object
class DummyDatabase(PyDatabase):
"""
An in-memory database based on python list for testing.
"""
def __init__(self):
super().__init__()
self.records = []
self.workload_reg = []

def has_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return True
return False

def commit_tuning_record(self, record: TuningRecord) -> None:
self.records.append(record)

def commit_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return workload
workload = Workload(mod)
self.workload_reg.append(workload)
return workload

def get_top_k(self, workload: Workload, top_k: int) -> List[TuningRecord]:
return list(
filter(
lambda x: x.workload == workload,
sorted(self.records, key=lambda x: sum(x.run_secs) / len(x.run_secs)),
)
)[: int(top_k)]

def __len__(self) -> int:
return len(self.records)

def print_results(self) -> None:
print("\n".join([str(r) for r in self.records]))

@derived_object
class DummyRunnerFuture(PyRunnerFuture):
def done(self) -> bool:
return True

def result(self) -> RunnerResult:
return RunnerResult([random.uniform(5, 30) for _ in range(random.randint(1, 10))], None)


@derived_object
class DummyBuilder(PyBuilder):
def build(self, build_inputs: List[BuilderInput]) -> List[BuilderResult]:
return [BuilderResult("test_path", None) for _ in build_inputs]


@derived_object
class DummyRunner(PyRunner):
def run(self, runner_inputs: List[RunnerInput]) -> List[RunnerFuture]:
return [DummyRunnerFuture() for _ in runner_inputs]

@derived_object
class DummyMutator(PyMutator):
"""Dummy Mutator for testing"""

def initialize_with_tune_context(self, context: "TuneContext") -> None:
pass

def apply(self, trace: Trace, _) -> Optional[Trace]:
return Trace(trace.insts, {})
39 changes: 1 addition & 38 deletions tests/python/unittest/test_meta_schedule_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
from tvm.script import tir as T
from tvm.target import Target
from tvm.tir import Schedule
from tvm.meta_schedule.testing import DummyDatabase
from tvm.meta_schedule.testing.tlcbench import load_quantized_bert_base
from tvm.meta_schedule.tune import extract_task_from_relay, Parse

Expand Down Expand Up @@ -106,44 +107,6 @@ def test_meta_schedule_integration_extract_from_resnet():

@requires_torch
def test_meta_schedule_integration_apply_history_best():
@derived_object
class DummyDatabase(PyDatabase):
def __init__(self):
super().__init__()
self.records = []
self.workload_reg = []

def has_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return True
return False

def commit_tuning_record(self, record: TuningRecord) -> None:
self.records.append(record)

def commit_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return workload
workload = Workload(mod)
self.workload_reg.append(workload)
return workload

def get_top_k(self, workload: Workload, top_k: int) -> List[TuningRecord]:
return list(
filter(
lambda x: x.workload == workload,
sorted(self.records, key=lambda x: sum(x.run_secs) / len(x.run_secs)),
)
)[: int(top_k)]

def __len__(self) -> int:
return len(self.records)

def print_results(self) -> None:
print("\n".join([str(r) for r in self.records]))

mod, _, _ = get_network(name="resnet_18", input_shape=[1, 3, 224, 224])
database = DummyDatabase()
env = ApplyHistoryBest(database)
Expand Down
72 changes: 3 additions & 69 deletions tests/python/unittest/test_meta_schedule_measure_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,9 @@
from tvm.ir import IRModule, assert_structural_equal
from tvm.meta_schedule.builder import BuilderResult
from tvm.meta_schedule.measure_callback import PyMeasureCallback
from tvm.meta_schedule.builder import PyBuilder, BuilderInput, BuilderResult
from tvm.meta_schedule.runner import (
RunnerInput,
RunnerResult,
RunnerFuture,
PyRunnerFuture,
PyRunner,
)
from tvm.meta_schedule.database import PyDatabase, Workload, TuningRecord
from tvm.meta_schedule.builder import BuilderResult
from tvm.meta_schedule.runner import RunnerResult
from tvm.meta_schedule.testing import DummyDatabase, DummyRunner, DummyBuilder
from tvm.meta_schedule.search_strategy import MeasureCandidate
from tvm.meta_schedule.task_scheduler import RoundRobin, TaskScheduler
from tvm.meta_schedule.utils import derived_object
Expand Down Expand Up @@ -61,66 +55,6 @@ def main(a: T.handle, b: T.handle, c: T.handle) -> None:
# pylint: enable=invalid-name,no-member,line-too-long,too-many-nested-blocks,no-self-argument


@derived_object
class DummyRunnerFuture(PyRunnerFuture):
def done(self) -> bool:
return True

def result(self) -> RunnerResult:
return RunnerResult([random.uniform(5, 30) for _ in range(random.randint(1, 10))], None)


@derived_object
class DummyBuilder(PyBuilder):
def build(self, build_inputs: List[BuilderInput]) -> List[BuilderResult]:
return [BuilderResult("test_path", None) for _ in build_inputs]


@derived_object
class DummyRunner(PyRunner):
def run(self, runner_inputs: List[RunnerInput]) -> List[RunnerFuture]:
return [DummyRunnerFuture() for _ in runner_inputs]


@derived_object
class DummyDatabase(PyDatabase):
def __init__(self):
super().__init__()
self.records = []
self.workload_reg = []

def has_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return True
return False

def commit_tuning_record(self, record: TuningRecord) -> None:
self.records.append(record)

def commit_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return workload
workload = Workload(mod)
self.workload_reg.append(workload)
return workload

def get_top_k(self, workload: Workload, top_k: int) -> List[TuningRecord]:
return list(
filter(
lambda x: x.workload == workload,
sorted(self.records, key=lambda x: sum(x.run_secs) / len(x.run_secs)),
)
)[: int(top_k)]

def __len__(self) -> int:
return len(self.records)

def print_results(self) -> None:
print("\n".join([str(r) for r in self.records]))


def test_meta_schedule_measure_callback():
@derived_object
class FancyMeasureCallback(PyMeasureCallback):
Expand Down
53 changes: 1 addition & 52 deletions tests/python/unittest/test_meta_schedule_search_strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,6 @@
from tvm.meta_schedule import TuneContext
from tvm.meta_schedule.builder import LocalBuilder
from tvm.meta_schedule.cost_model import RandomModel
from tvm.meta_schedule.database import PyDatabase, TuningRecord, Workload
from tvm.meta_schedule.mutator.mutator import PyMutator
from tvm.meta_schedule.runner import LocalRunner, RunnerResult
from tvm.meta_schedule.search_strategy import (
EvolutionarySearch,
Expand All @@ -38,6 +36,7 @@
from tvm.meta_schedule.space_generator import ScheduleFn
from tvm.meta_schedule.task_scheduler import RoundRobin
from tvm.meta_schedule.utils import derived_object
from tvm.meta_schedule.testing import DummyDatabase, DummyMutator
from tvm.script import tir as T
from tvm.tir.schedule import Schedule, Trace

Expand Down Expand Up @@ -117,56 +116,6 @@ def test_meta_schedule_replay_func(TestClass: SearchStrategy): # pylint: disabl


def test_meta_schedule_evolutionary_search(): # pylint: disable = invalid-name]
@derived_object
class DummyMutator(PyMutator):
"""Dummy Mutator for testing"""

def initialize_with_tune_context(self, context: "TuneContext") -> None:
pass

def apply(self, trace: Trace, _) -> Optional[Trace]:
return Trace(trace.insts, {})

@derived_object
class DummyDatabase(PyDatabase):
"""Dummy Database for testing"""

def __init__(self):
super().__init__()
self.records = []
self.workload_reg = []

def has_workload(self, mod: IRModule) -> bool:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return True
return False

def commit_tuning_record(self, record: TuningRecord) -> None:
self.records.append(record)

def commit_workload(self, mod: IRModule) -> Workload:
for workload in self.workload_reg:
if tvm.ir.structural_equal(workload.mod, mod):
return workload
workload = Workload(mod)
self.workload_reg.append(workload)
return workload

def get_top_k(self, workload: Workload, top_k: int) -> List[TuningRecord]:
return list(
filter(
lambda x: x.workload == workload,
sorted(self.records, key=lambda x: sum(x.run_secs) / len(x.run_secs)),
)
)[: int(top_k)]

def __len__(self) -> int:
return len(self.records)

def print_results(self) -> None:
print("\n".join([str(r) for r in self.records]))

num_trials_per_iter = 10
num_trials_total = 100

Expand Down
Loading